Особенности гемопоэза в разные периоды онтогенеза. Основные этапы кроветворения

КРОВЕТВОРЕНИЕ (ГЕМОПОЭЗ)

КРОВЕТВОРЕНИЕ (ГЕМОПОЭЗ)

Гемопоэзом (haemopoesis) называют развитие крови. Различают эмбриональный гемопоэз, который происходит в эмбриональный период и приводит к развитию крови как ткани, и постэмбриональный гемопоэз, который представляет собой процесс физиологической регенерации крови.

Развитие эритроцитов называют эритропоэзом, развитие гранулоцитов - гранутоцитопоэзом, тромбоцитов - тромбоцитопоэзом, развитие моноцитов - моноцитопоэзом, развитие лимфоцитов и иммуноцитов - лимфоцито-и иммуноцитопоэзом.

7.4.1. Эмбриональный гемопоэз

В развитии крови как ткани в эмбриональный период можно выделить три основных этапа, последовательно сменяющих друг друга: 1) мезобластический, когда начинается развитие клеток крови во внезаро-дышевых органах - мезенхиме стенки желточного мешка и хориона (с 3-й по 9-ю нед развития зародыша человека) и появляется первая генерация стволовых клеток крови; 2) печеночный, который начинается в печени с 5-6-й нед развития зародыша, когда печень становится основным органом гемопоэза, в ней образуется вторая генерация СКК. Кроветворение в печени достигает максимума через 5 мес и завершается перед рождением. СКК печени заселяют вилочковую железу (здесь, начиная с 7-8-й нед, развиваются Т-лимфоциты), селезенку (гемопоэз начинается с 12-й нед) и лимфатические узлы (гемопоэз отмечается с 10-й нед); 3) медуллярный (костномозговой) - появление третьей генерации СКК в костном мозге, где гемопоэз начинается с 10-й нед и постепенно нарастает к рождению, а после рождения костный мозг становится центральным органом гемопоэза.

Кроветворение в стенке желточного мешка. У человека оно начинается в конце 2-й - начале 3-й нед эмбрионального развития. В мезенхиме стенки желточного мешка обособляются зачатки сосудистой крови, или

кровяные островки. В них мезенхимные клетки теряют отростки, округляются и преобразуются в стволовые клетки крови. Клетки, ограничивающие кровяные островки, уплощаются, соединяются между собой и образуют эндотелиальную выстилку будущего сосуда. Часть СКК дифференцируются в первичные клетки крови (бласты), крупные клетки с базофиль-ной цитоплазмой и ядром, в котором хорошо заметны крупные ядрышки (рис. 7.14). Большинство первичных кровяных клеток митотически делятся и превращаются в первичные эритробласты, характеризующиеся крупным размером (мегалобласты). Это превращение совершается в связи с накоплением эмбрионального гемоглобина в цитоплазме бластов, при этом сначала образуются полихроматофильные эритробласты, а затем ацидофильные эри-тробласты с большим содержанием гемоглобина. В некоторых первичных эритробластах ядра подвергаются кариорексису и удаляются из клеток, в других клетках ядра сохраняются. В результате образуются безъядерные и ядросодержащие первичные эритроциты, отличающиеся большим размером от ацидофильных эритробластов и поэтому получившие название мегало-цитов. Такой тип кроветворения называется мегалобластическим. Он характерен для эмбрионального периода, но может появляться в постнатальном периоде при некоторых заболеваниях (злокачественное малокровие).

Наряду с мегалобластическим в стенке желточного мешка начинается нормобластическое кроветворение, при котором из бластов образуются вторичные эритробласты; сначала по мере накопления в их цитоплазме гемоглобина они превращаются в полихроматофильные эритробласты, далее в нормобласты, из которых образуются вторичные эритроциты (нормоци-ты); размеры последних соответствуют эритроцитам (нормоцитам) взрослого человека (см. рис. 7.14, а). Развитие эритроцитов в стенке желточного мешка происходит внутри первичных кровеносных сосудов, т. е. интраваску-лярно. Одновременно экстраваскулярно из бластов, расположенных вокруг сосудов, дифференцируется небольшое количество гранулоцитов - ней-трофилов и эозинофилов. Часть СКК остается в недифференцированном состоянии и разносится током крови по различным органам зародыша, где происходит их дальнейшая дифференцировка в клетки крови или соединительной ткани. После редукции желточного мешка основным кроветворным органом временно становится печень.

Кроветворение в печени. Печень закладывается примерно на 3-4-й нед эмбрионального развития, а с 5-й нед она становится центром кроветворения. Кроветворение в печени происходит экстраваскулярно, по ходу капилляров, врастающих вместе с мезенхимой внутрь печеночных долек. Источником кроветворения в печени служат стволовые клетки крови, из которых образуются бласты, дифференцирующиеся во вторичные эритроциты. Процесс их образования повторяет описанные выше этапы образования вторичных эритроцитов. Одновременно с развитием эритроцитов в печени образуются зернистые лейкоциты, главным образом нейтрофильные и ацидофильные. В цитоплазме бласта, становящейся более светлой и менее базофильной, появляется специфическая зернистость, после чего ядро приобретает неправильную форму. Кроме гранулоцитов, в печени формируют-

Рис. 7.14. Эмбриональный гемопоэз (по А. А. Максимову):

а - кроветворение в стенке желточного мешка зародыша морской свинки: 1 - мезенхимальные клетки; 2 - эндотелий стенки сосудов; 3 - первичные кровяные клетки-бласты; 4 - митотически делящиеся бласты; б - поперечный срез кровяного островка зародыша кролика 8,5 сут: 1 - полость сосуда; 2 - эндотелий; 3 - интра-васкулярные кровяные клетки; 4 - делящаяся кровяная клетка; 5 - формирование первичной кровяной клетки; 6 - энтодерма; 7 - висцеральный листок мезодермы; в - развитие вторичных эритробластов в сосуде зародыша кролика 13,5 сут: 1 - эндотелий; 2 - проэритробласты; 3 - базофильные эритробласты; 4 - поли-хроматофильные эритробласты; 5 - оксифильные (ацидофильные) эритробласты (нормобласты); 6 - оксифильный (ацидофильный) эритробласт с пикнотическим ядром; 7 - обособление ядра от оксифильного (ацидофильного) эритробласта (нор-мобласта); 8 - вытолкнутое ядро нормобласта; 9 - вторичный эритроцит; г - кроветворение в костном мозге зародыша человека с копчиково-теменной длиной тела 77 мм. Экстраваскулярное развитие клеток крови: 1 - эндотелий сосуда; 2 - бласты; 3 - нейтрофильные гранулоциты; 4 - эозинофильный миелоцит

ся гигантские клетки - мегакариоциты. К концу внутриутробного периода кроветворение в печени прекращается.

Кроветворение в тимусе. Вилочковая железа закладывается в конце 1-го мес внутриутробного развития, и на 7-8-й нед ее эпителий начинает заселяться стволовыми клетками крови, которые дифференцируются в лимфоциты тиму-

са. Увеличивающееся число лимфоцитов тимуса дает начало Т-лимфоцитам, заселяющим Т-зоны периферических органов иммунопоэза.

Кроветворение в селезенке. Закладка селезенки происходит в конце 1-го мес внутриутробного развития. Из вселяющихся в нее стволовых клеток происходит экстраваскулярное образование всех видов форменных элементов крови, т. е. селезенка в эмбриональном периоде представляет собой универсальный кроветворный орган. Образование эритроцитов и гранулоци-тов в селезенке достигает максимума на 5-м мес внутриутробного развития. После этого в ней начинает преобладать лимфоцитопоэз.

Кроветворение в лимфатических узлах. Первые закладки лимфатических узлов у человека появляются на 7-8-й нед эмбрионального развития. Большинство лимфатических узлов развиваются на 9-10-й нед. В этот же период начинается проникновение в лимфатические узлы стволовых клеток крови, из которых дифференцируются эритроциты, гранулоциты и мегака-риоциты. Однако формирование этих элементов быстро подавляется образованием лимфоцитов, составляющих основную часть клеток лимфатических узлов. Появление единичных лимфоцитов происходит уже на 8-15-й нед развития, однако массовое «заселение» лимфатических узлов предшественниками Т- и В-лимфоцитов начинается с 16-й нед, когда формируются посткапиллярные венулы, через стенку которых осуществляется процесс миграции клеток. Из клеток-предшественников дифференцируются лим-фобласты (большие лимфоциты), а далее средние и малые лимфоциты. Дифференцировка Т- и В-лимфоцитов происходит в Т- и В-зависимых зонах лимфатических узлов.

Кроветворение в костном мозге. Закладка костного мозга осуществляется на 2-м мес внутриутробного развития. Первые гемопоэтические элементы появляются на 12-й нед развития; в это время основную их массу составляют эритробласты и предшественники гранулоцитов. Из СКК в костном мозге формируются все форменные элементы крови, развитие которых происходит экстраваскулярно (см. рис. 7.14, г). Часть СКК сохраняются в костном мозге в недифференцированном состоянии, они могут расселяться по другим органам и тканям и являться источником развития клеток крови и соединительной ткани. Таким образом, костный мозг становится центральным органом, осуществляющим универсальный гемопоэз, и остается им в течение постнатальной жизни. Он обеспечивает стволовыми кроветворными клетками тимус и другие органы гемопоэза.

7.4.2. Постэмбриональный гемопоэз

Постэмбриональный гемопоэз представляет собой процесс физиологической регенерации крови (клеточное обновление), который компенсирует физиологическое разрушение дифференцированных клеток. Миелопоэз происходит в миелоидной ткани (textus myeloideus), расположенной в эпифизах трубчатых и полостях многих губчатых костей (см. главу 14). Здесь развиваются форменные элементы крови: эритроциты, гранулоциты, моноциты, кровяные пластинки, предшественники лимфоцитов. В миелоид-

ной ткани находятся стволовые клетки крови и соединительной ткани. Предшественники лимфоцитов постепенно мигрируют и заселяют такие органы, как тимус, селезенка, лимфатические узлы и др.

Лимфопоэз происходит в лимфоидной ткани (textus lymphoideus), которая имеет несколько разновидностей, представленных в тимусе, селезенке, лимфатических узлах. Она выполняет основные функции: образование Т- и В-лимфоцитов и иммуноцитов (плазмоцитов и др.).

СКК являются плюрипотентными (полипотентными) предшественниками всех клеток крови и относятся к самоподдерживающейся популяции клеток. Они редко делятся. Впервые представление о родоначальных клетках крови сформулировал в начале XX в. А. А. Максимов, который считал, что по своему строению они сходны с лимфоцитами. В настоящее время это представление нашло подтверждение и дальнейшее развитие в новейших экспериментальных исследованиях, проводимых главным образом на мышах. Выявление СКК стало возможным при применении метода коло-ниеобразования.

Экспериментально (на мышах) показано, что при введении смертельно облученным животным (утратившим собственные кроветворные клетки) взвеси клеток красного костного мозга или фракции, обогащенной СКК, в селезенке появляются колонии клеток - потомков одной СКК. Пролиферативную активность СКК модулируют колониестимулирующие факторы (КСФ), интерлейкины (ИЛ-3 и др.). Каждая СКК в селезенке образует одну колонию и называется селезеночной колониеобразующей единицей (КОЕ-С). Подсчет колоний позволяет судить о количестве стволовых клеток, находящихся во введенной взвеси клеток. Таким образом, было установлено, что у мышей на 105 клеток костного мозга приходится около 50 стволовых клеток. Исследование очищенной фракции стволовых клеток с помощью электронного микроскопа позволяет сделать вывод, что по ультраструктуре они очень близки к малым темным лимфоцитам.

Исследование клеточного состава колоний выявляет две линии их диф-ференцировки. Одна линия дает начало мультипотентной клетке - родоначальнику гранулоцитарного, эритроцитарного, моноцитарного и мега-кариоцитарного дифферонов гемопоэза (КОЕ-ГЭММ). Вторая линия дает начало мультипотентной клетке - родоначальнику лимфопоэза (КОЕ-Л) (рис. 7.15). Из мультипотентных клеток дифференцируются олигопотент-ные (КОЕ-ГМ) и унипотентные родоначальные (прогениторные) клетки. Методом колониеобразования определены родоначальные унипотентные клетки для моноцитов (КОЕ-М), нейтрофилов (КОЕ-Гн), эозинофилов (КОЕ-Эо), базофилов (КОЕ-Б), эритроцитов (БОЕ-Э и КОЕ-Э), мегака-риоцитов (КОЕ-МГЦ), из которых образуются клетки-предшественники (прекурсорные). В лимфопоэтическом ряду выделяют унипотентные клетки - предшественники В-лимфоцитов и соответственно Т-лимфоцитов. Полипотентные (плюрипотентные и мультипотентные), олигопотентные и унипотентные клетки морфологически не различаются.

Все приведенные выше стадии развития клеток составляют четыре основных компартмента: I - стволовые клетки крови (плюрипотентные, полипо-

Рис. 7.15. Постэмбриональный гемопоэз, окраска азуром II-эозином (по Н. А. Юриной).

Стадии дифференцировки крови: I-IV - морфологически неидентифицируе-мые клетки; V, VI - морфологически идентифицируемые клетки. Б - базофил;

БОЕ - бурстобразующая единица; Г - гранулоциты; Гн - гранулоцит нейтрофильный; КОЕ - колониеобразующие единицы; КОЕ-С - селезеночная колониеобразующая единица; Л - лимфоцит; Лск - лимфоидная стволовая клетка; М - моноцит; Мег - мегакариоцит; Эо - эозинофил; Э - эритроцит. Ретикулоцит окрашен суправитально

тентные); II - коммитированные родоначальные клетки (мультипотентные); III - коммитированные родоначальные (прогенторные) олигопотентные и унипотентные клетки; IV - клетки-предшественники (прекурсорные).

Дифференцировка полипотентных клеток в унипотентные определяется действием ряда специфических факторов - эритропоэтинов (для эритро-бластов), гранулопоэтинов (для миелобластов), лимфопоэтинов (для лим-фобластов), тромбопоэтинов (для мегакариобластов) и др.

Из каждой клетки-предшественника образуется конкретный вид клеток. Клетки каждого вида при созревании проходят ряд стадий и в совокупности образуют компартмент созревающих клеток (V). Зрелые клетки представляют последний компартмент (VI). Все клетки V и VI компартментов морфологически можно идентифицировать (рис. 7.15).

Эритроцитопоэз

Родоначальником эритроидных клеток человека, как и других клеток крови, является полипотентная стволовая клетка крови, способная формировать в культуре костного мозга колонии. Полипотентная СКК в результате дивергентной дифференцировки дает два типа мультипотентных частично коммитированных кроветворных клеток: 1) коммитированные к лимфо-идному типу дифференцировки (Лск, КОЕ-Л); 2) КОЕ-ГЭММ - единицы, образующие смешанные колонии, состоящие из гранулоцитов, эритроцитов, моноцитов и мегакариоцитов (аналог КОЕ-С in vitro). Из второго типа мультипотентных кроветворных клеток дифференцируются унипотентные единицы: бурстобразующая (БОЕ-Э) и колониеобразующая (КОЕ-Э) эри-троидные клетки, которые являются коммитированными родоначальными клетками эритропоэза.

БОЕ-Э - взрывообразующая, или бурстобразующая, единица (burst - взрыв) по сравнению с КОЕ-Э является менее дифференцированной. БОЕ-Э может при интенсивном размножении быстро образовать крупную колонию клеток. БОЕ-Э в течение 10 сут осуществляет 12 делений и образует колонию из 5000 эритроцитарных клеток с незрелым фетальным гемоглобином (HbF). БОЕ-Э малочувствительна к эритропоэтину и вступает в фазу размножения под влиянием интерлейкина-3 (бурстпромоторная активность), вырабатываемого моноцитами - макрофагами и Т-лимфоцитами. Интерлейкин-3 (ИЛ-3) является гликопротеином с молекулярной массой 20-30 килодальтон. Он активирует ранние полипотентные СКК, обеспечивая их самоподдержание, а также запускает дифференцировку полипотент-ных клеток в коммитированные клетки. ИЛ-3 способствует образованию клеток (КОЕ-Э), чувствительных к эритропоэтину.

КОЕ-Э по сравнению с БОЕ-Э - более зрелая клетка. Она чувствительна к эритропоэтину, под влиянием которого размножается (в течение 3 сут делает 6 делений), формирует более мелкие колонии, состоящие примерно из 60 эри-троцитарных элементов. Количество эритроидных клеток, образуемых в сутки из КОЕ-Э, в 5 раз меньше аналогичных клеток, образуемых из БОЕ-Э.

Таким образом, БОЕ-Э содержат клетки-предшественники эритроцитов, которые способны генерировать тысячи эритроидных прекурсоров

Рис. 7.16. Последовательные стадии дифференцировки проэритробласта в эритроцит: А - проэритробласт; Б - базофильный эритробласт; В - полихроматофильный эритробласт; Г - ацидофильный эритробласт (нормобласт); Д - выталкивание ядра из ацидофильного эритробласта; Е - ретикулоцит; Ж - пикнотичное ядро; З - эритроцит. 1 - ядро; 2 - рибосомы и полирибосомы; 3 - митохондрии; 4 - гранулы гемоглобина

(предшественников). Они содержатся в малом количестве в костном мозге и крови благодаря частичному самоподдержанию и миграции из компарт-мента мультипотентных кроветворных клеток. КОЕ-Э является более зрелой клеткой, образующейся из пролиферирующей БОЕ-Э.

Эритропоэтин - гликопротеиновый гормон, образующийся в юкста-гломерулярном аппарате (ЮГА) почки (90 %) и печени (10 %) в ответ на снижение парциального давления кислорода в крови (гипоксия) и запускающий эритропоэз из КОЕ-Э. Под его влиянием КОЕ-Э дифференцируются в проэритробласты, из которых образуются эритробласты (базофиль-ные, полихроматофильные, ацидофильные), ретикулоциты и эритроциты. Образующиеся из КОЕ-Э эритроидные клетки морфологически идентифицируются (рис. 7.16). Сначала образуется проэритробласт.

Проэритробласт - клетка диаметром 14-18 мкм, имеющая большое круглое ядро с мелкозернистым хроматином, одно-два ядрышка, слабобазо-фильную цитоплазму, в которой содержатся свободные рибосомы и полисомы, слаборазвитые комплекс Гольджи и гранулярная эндоплазматическая сеть. Базофильный эритробласт - клетка меньшего размера (13-16 мкм). Его ядро содержит больше гетерохроматина. Цитоплазма клетки обладает хорошо выраженной базофильностью в связи с накоплением в ней рибосом, в которых начинается синтез Нb. Полихроматофильный эритробласт - клетка размером 10-12 мкм. Ее ядро содержит много гетерохроматина. В цитоплазме клетки накапливается синтезируемый на рибосомах НЬ, окрашивающийся эозином, благодаря чему она приобретает серовато-фиолетовый цвет. Проэритробласты, базофильные и полихроматофильные эритробла-сты способны размножаться путем митоза, поэтому в них часто видны фигуры деления.

Следующая стадия дифференцировки - образование ацидофильного (оксифилия) эритробласта (нормобласта). Это клетка небольшого размера (8-10 мкм), имеющая маленькое пикнотичное ядро. В цитоплазме эритро-

бласта содержится много НЬ, обеспечивающего ее ацидофилию (оксифи-лию) - окрашивание эозином в ярко-розовый цвет. Пикнотическое ядро выталкивается из клетки, в цитоплазме сохраняются лишь единичные органеллы (рибосомы, митохондрии). Клетка утрачивает способность к делению.

Ретикулоцит - постклеточная структура (безъядерная клетка) с небольшим содержанием рибосом, обусловливающих наличие участков базофи-лии, и преобладанием НЬ, что в целом дает многоцветную (полихромную) окраску (поэтому эта клетка получила название «полихроматофильный эритроцит»). При выходе в кровь ретикулоцит созревает в эритроцит в течение 1-2 сут. Эритроцит - это клетка, образующаяся на конечной стадии дифференцировки клеток эритроидного ряда. Период образования эритроцита, начиная со стадии проэритробласта, занимает 7 сут.

Таким образом, в процессе эритропоэза происходят уменьшение размера клетки в 2 раза (см. рис. 7.16); уменьшение размера и уплотнение ядра и его выход из клетки; уменьшение содержания РНК, накопление НЬ, сопровождаемые изменением окраски цитоплазмы - от базофильной до полихро-матофильной и ацидофильной; потеря способности к делению клетки. Из одной СКК в течение 7-10 сут в результате 12 делений образуется около 2000 зрелых эритроцитов.

Эритропоэз у млекопитающих и человека протекает в костном мозге в особых морфофункциональных ассоциациях, получивших название эри-тробластических островков, впервые описанных французским гематологом М. Бесси (1958). Эритробластический островок состоит из макрофага, окруженного одним или несколькими слоями эритроидных клеток, развивающихся из унипотентной КОЕ-Э, вступившей в контакт с макрофагом КОЕ-Э. Образующиеся из нее клетки (от проэритробласта до ретикулоцита) удерживаются в контакте с макрофагом его рецепторами (сиалоадгезинами и др.) (рис. 7.17, 7.18).

У взрослого организма потребность в эритроцитах обычно обеспечивается за счет усиленного размножения полихроматофильных эритробластов (гомопластический гемопоэз). Однако, когда потребность организма в эритроцитах возрастает (например, при потере крови), эритробласты начинают развиваться из предшественников, а последние - из стволовых клеток (гетеропластический эритропоэз).

В норме из костного мозга в кровь поступают только эритроциты и рети-кулоциты.

Гранулоцитопоэз

Источниками гранулоцитопоэза являются также СКК и мультипотент-ные КОЕ-ГЭММ (см. рис. 7.15). В результате дивергентной дифференци-ровки через ряд промежуточных стадий в трех различных направлениях образуются гранулоциты трех видов: нейтрофилы, эозинофилы и базофилы. Клеточные диффероны для гранулоцитов представлены следующими формами: СКК → КОЕ-ГЭММ → КОЕ-ГМ → унипотентные предшественники (КОЕ-Б, КОЕ-Эо, КОЕ-Гн) → миелобласт → промиелоцит → миелоцит →

Рис. 7.17. Динамика развития эритробластического островка (по М. Бесси и соавт., с изменениями):

а - схема: 1 - цитоплазма макрофага; 2 - отростки макрофага; 3 - базофильные эритробласты; 4 - полихроматофильные эритробласты; 5 - ацидофильный эритро-бласт; 6 - ретикулоцит; б - срез эритроидного островка: 1 - макрофаг; 2 - эритроциты; 3 - митотически делящийся эритробласт. Электронная микрофотография по Ю. М. Захарову. Увеличение 8000

Рис. 7.18. Развитие эритроцитов в печени плода человека:

а, б - 15-недельный плод (увеличение 6000); в - 20-недельный плод (увеличение 15 000). 1 - эксцентрично расположенное ядро эритробласта; 2 - обособление пикнотического ядра ацидофильного эритробласта; 3 - отделение пикнотического ядра с узким ободком цитоплазмы от ацидофильного эритробласта; 4 - ретикулоцит с единичными органеллами (указано стрелками). Электронная микрофотография (по Замбони)

Рис. 7.19. Дифференцировка нейтрофильного гранулоцита в костном мозге (по Д. Байнтону, М. Фарквару, Дж. Элиоту, с изменениями):

А - миелобласт; Б - промиелоцит; В - миелоцит; Г - метамиелоцит; Д - палоч-коядерный нейтрофильный гранулоцит (нейтрофил); Е - сегментоядерный нейтрофильный гранулоцит. 1 - ядро; 2 - первичные (азурофильные) гранулы; 3 - комплекс Гольджи; 4 - вторичные - специфические гранулы

метамиелоцит → палочкоядерный гранулоцит → сегментоядерный гранулоцит.

По мере созревания гранулоцитов клетки уменьшаются в размерах, изменяется форма их ядер от округлой до сегментированной, в цитоплазме накапливается специфическая зернистость (рис. 7.19).

Миелобласты (myeloblastus), дифференцируясь в направлении того или иного гранулоцита, дают начало промиелоцитам (promyelocytus) (см. рис. 7.15). Это крупные клетки, содержащие овальное или круглое светлое ядро, в котором имеется несколько ядрышек. Около ядра располагается ясно выраженная центросома, хорошо развиты комплекс Гольджи, лизосомы. Цитоплазма слегка базофильна. В ней накапливаются первичные (азуро-фильные) гранулы, которые характеризуются высокой активностью мие-лопероксидазы, а также кислой фосфатазы, т. е. относятся к лизосомам. Промиелоциты делятся митотически. Специфическая зернистость отсутствует.

Нейтрофильные миелоциты (myelocytus neutrophilicus) имеют размер от 12 до 18 мкм. Эти клетки размножаются митозом. Цитоплазма их становится диффузно ацидофильной, в ней появляются наряду с первичными вторичные (специфические) гранулы, характеризующиеся меньшей электронной плотностью. В миелоцитах обнаруживаются все органеллы. Количество митохондрий невелико. Эндоплазматическая сеть состоит из пузырьков. Рибосомы располагаются на поверхности мембранных пузырьков, а также диффузно в цитоплазме. По мере размножения нейтрофильных миелоцитов круглое или овальное ядро становится бобовидным, начинает окрашиваться темнее, хроматиновые глыбки становятся грубыми, ядрышки исчезают.

Такие клетки уже не делятся. Это метамиелоциты (metamyelocytus) (см. рис. 7.19). В цитоплазме увеличивается число специфических гранул. Если метамиелоциты встречаются в периферической крови, то их называют юными формами. При дальнейшем созревании их ядро приобретает вид изогнутой палочки. Подобные формы получили название палочкоядерных гранулоцитов. Затем ядро сегментируется, и клетка становится сегментоядер-ным нейтрофильным гранулоцитом. Полный период развития нейтрофильного гранулоцита составляет около 14 сут, при этом период пролиферации продолжается около 7,5 сут, а постмитотический период дифференцировки - около 6,5 сут.

Эозинофильные (ацидофильные) миелоциты (см. рис. 7.15) представляют собой клетки округлой формы диаметром (на мазке) около 14-16 мкм. По характеру строения ядра они мало отличаются от нейтрофильных миелоци-тов. Цитоплазма их заполнена характерной эозинофильной зернистостью. В процессе созревания миелоциты митотически делятся, а ядро приобретает подковообразную форму. Такие клетки называются ацидофильными мета-миелоцитами. Постепенно в средней части ядро истончается и становится двудольчатым, в цитоплазме увеличивается количество специфических гранул. Клетка утрачивает способность к делению.

Среди зрелых форм различают палочкоядерные и сегментоядерные эозино-фильные гранулоциты с двудольчатым ядром.

Базофильные миелоциты (см. рис. 7.15) встречаются в меньшем количестве, чем нейтрофильные или эозинофильные миелоциты. Размеры их примерно такие же, как и эозинофильных миелоцитов; ядро округлой формы, без ядрышек, с рыхлым расположением хроматина. Цитоплазма базофильных миелоцитов содержит в широко варьирующих количествах специфические базофильные зерна неодинаковых размеров, которые проявляют мета-хромазию при окрашивании азуром и легко растворяются в воде. По мере созревания базофильный миелоцит превращается в базофильный метамиелоцит, а затем в зрелый базофильный гранулоцит.

Все миелоциты, особенно нейтрофильные, обладают способностью фагоцитировать, а начиная с метамиелоцита, приобретают подвижность.

У взрослого организма потребность в лейкоцитах обеспечивается за счет размножения миелоцитов. При кровопотерях, например, миелоциты начинают развиваться из миелобластов, а последние из унипотентных и поли-потентных СКК.

Мегакариоцитопоэз. Тромбоцитопоэз

Кровяные пластинки образуются в костном мозге из мегакариоцитов - гигантских по величине клеток, которые дифференцируются из СКК, проходя ряд стадий. Последовательные стадии развития можно представить следующим клеточным диффероном: СКК → КОЕ-ГЭММ → КОЕ-МГЦ → мегакариобласт → промегакариоцит → мегакариоцит → тромбоциты (кровяные пластинки). Весь период образования пластинок составляет около 10 сут (см. рис. 7.15).

Мегакариобласт (megacaryoblastus) - клетка диаметром 15-25 мкм, имеет ядро с инвагинациями и относительно небольшой ободок базофильной цитоплазмы. Клетка способна к делению митозом, иногда содержит два ядра. При дальнейшей дифференцировке утрачивает способность к митозу и делится путем эндомитоза, при этом увеличиваются плоидность и размер ядра.

Промегакариоцит (promegacaryocytus) - клетка диаметром 30-40 мкм, содержит полиплоидные ядра - тетраплоидные, октаплоидные (4 n, 8 n), несколько пар центриолей. Объем цитоплазмы возрастает, в ней начинают накапливаться азурофильные гранулы. Клетка также способна к эндоми-тозу и дальнейшему увеличению плоидности ядер.

Мегакариоцит (megacaryocytus) - дифференцированная форма. Среди мегакариоцитов различают резервные клетки, не образующие пластинок, и зрелые активированные клетки, образующие кровяные пластинки. Резервные мегакариоциты диаметром 50-70 мкм, имеют очень большое, дольчатое ядро с набором хромосом 16-32 n; в их цитоплазме имеются две зоны - околоядерная, содержащая органеллы и мелкие азурофильные гранулы, и наружная (эктоплазма) - слабобазофильная, в которой хорошо развиты элементы цитоскелета. Зрелый, активированный мегакариоцит - крупная клетка диаметром 50-70 мкм (иногда даже до 100 мкм). Содержит очень крупное, сильно дольчатое полиплоидное ядро (до 64 n). В ее цитоплазме накапливается много азурофильных гранул, которые объединяются в группы. Прозрачная зона эктоплазмы также заполняется гранулами и вместе с плазмолеммой формирует псевдоподии в виде тонких отростков, направленных к стенкам сосудов. В цитоплазме мегакариоцита наблюдается скопление линейно расположенных пузырьков, которые разделяют зоны цитоплазмы с гранулами. Из пузырьков формируются демаркационные мембраны, разделяющие цитоплазму мегакариоцита на участки диаметром 1-3 мкм, содержащие по 1-3 гранулы (будущие кровяные пластинки). В цитоплазме можно выделить три зоны - перинуклеарную, промежуточную и наружную. В наружной зоне цитоплазмы наиболее активно идут процессы демаркации, формирования протромбоцитарных псевдоподий, проникающих через стенку синусов в их просвет, где и происходит отделение кровяных пластинок (рис. 7.20). После отделения пластинок остается клетка, содержащая дольчатое ядро, окруженное узким ободком цитоплазмы, - резидуальный мегакариоцит, который затем подвергается разрушению. При уменьшении числа кровяных пластинок в крови (тромбоцитопения), например после кровопотери, отмечается усиление мегакариоцитопоэза, приво-

Рис. 7.20. Ультрамикроскопическое строение мегакариоцита (по Н. А. Юриной, Л. С. Румянцевой):

1 - ядро; 2 - гранулярная эндоплазматическая сеть; 3 - гранулы; 4 - комплекс Гольджи; 5 - митохондрии; 6 - гладкая эндоплазматическая сеть; 7 - альфа-гранулы; - лизосомы; 8 - инвагинация плазмолеммы; 9 - демаркационные мембраны; 10 - формирующиеся кровяные пластинки

дящее к увеличению количества мегакариоцитов в 3-4 раза с последующей нормализацией числа тромбоцитов в крови.

Моноцитопоэз

Образование моноцитов происходит из стволовых клеток костного мозга по схеме: СКК → КОЕ-ГЭММ → КОЕ-ГМ → унипотентный предшественник моноцита (КОЕ-М) → монобласт (monoblastus) → промоноцит → моноцит (monocytus). Моноциты из крови поступают в ткани, где являются источником развития различных видов макрофагов.

Лимфоцитопоэз и иммуноцитопоэз

Лимфоцитопоэз проходит следующие стадии: СКК → КОЕ-Л (лимфоидная родоначальная мультипотентная клетка) → унипотентные предшественники лимфоцитов (пре-Т-клетки и пре-В-клетки)→ лимфобласт (lymphoblastus) пролимфоцит → лимфоцит. Особенность лимфоцитопоэ-за - способность дифференцированных клеток (лимфоцитов) дедифферен-цироваться в бластные формы.

Процесс дифференцировки Т-лимфоцитов в тимусе приводит к образованию из унипотентных предшественников Т-бластов, из которых формируются эффекторные лимфоциты - киллеры, хелперы, супрессоры.

Дифференцировка унипотентных предшественников В-лимфоцитов в лимфоидной ткани ведет к образованию плазмобластов (plasmoblastus), затем проплазмоцитов, плазмоцитов (plasmocytus). Более подробно процессы образования иммунокомпетентных клеток описаны в главе 14.

Регуляция гемопоэза

Кроветворение регулируется факторами роста, обеспечивающими пролиферацию и дифференцировку СКК и последующих стадий их развития, факторами транскрипции, влияющими на экспрессию генов, определяющих направление дифференцировки гемопоэтических клеток, а также витаминами, гормонами.

Факторы роста включают колониестимулирующие факторы, интерлей-кины и ингибирующие факторы. Они являются гликопротеинами с молекулярной массой около 20 килодальтон. Гликопротеины действуют и как циркулирующие гормоны, и как местные медиаторы, регулирующие гемопоэз и развитие клеточных дифферонов. Они почти все действуют на СКК, КОЕ, коммитированные и зрелые клетки. Однако отмечаются индивидуальные особенности действия этих факторов на клетки-мишени.

Например, фактор роста стволовых клеток влияет на пролиферацию и миграцию СКК в эмбриогенезе. В постнатальном периоде на гемопоэз оказывают влияние несколько КСФ, среди которых наиболее изучены факторы, стимулирующие развитие гранулоцитов и макрофагов (ГМ-КСФ, Г-КСФ, М-КСФ), а также интерлейкины.

Как видно из табл. 7.1, мульти-КСФ и интерлейкин-3 действуют на поли-потентную стволовую клетку и большинство КОЕ. Некоторые КСФ могут действовать на одну или более стадий гемопоэза, стимулируя деление, диф-ференцировку клеток или их функцию. Большинство указанных факторов выделено и применяется для лечения различных болезней. Для получения их используются биотехнологические методы.

Большая часть эритропоэтина образуется в почках (интерстициальные клетки), меньшая - в печени. Его образование регулируется содержанием в крови О2, которое зависит от количества циркулирующих в крови эритроцитов. Снижение числа эритроцитов и соответственно парциального давления кислорода (Ро2) является сигналом для увеличения продукции эритропоэтина. Эритропоэтин действует на чувствительные к нему КОЕ-Э, стимулируя их пролиферацию и дифференцировку, что в конечном итоге приводит к повышению содержания в крови эритроцитов. К факторам роста для эритроидных клеток, кроме эритропоэтина, относится фактор бурст-промоторной активности (БПА), который влияет на БОЕ-Э. БПА образуется клетками ретикулоэндотелиальной системы. В настоящее время считают, что он является интерлейкином-3.

Тромбопоэтин синтезируется в печени, стимулирует пролиферацию КОЕ-МГЦ, их дифференцировку и образование тромбоцитов.

Ингибирующие факторы дают противоположный эффект, т. е. тормозят гемопоэз. К ним относятся липопротеины, блокирующие действие КСФ (лактофер-рин, простагландины, интерферон, кейлоны). Гормоны также влияют на гемопоэз. Например, гормон роста стимулирует эритропоэз, глюкокортикоиды, напротив, подавляют развитие клеток-предшественников.

Таблица 7.1. Гемопоэтические факторы роста (стимуляторы)

1 Нейтрофилы, эозинофилы, базофилы.

Витамины необходимы для стимуляции пролиферации и дифференцировки гемо-поэтических клеток. Витамин В12 потребляется с пищей и поступает с кровью в костный мозг, где влияет на гемопоэз. Нарушение процесса всасывания при различных заболеваниях может служить причиной дефицита витамина В12 и нарушений в гемопоэ-зе. Фолиевая кислота участвует в синтезе пуриновых и пиримидиновых оснований.

Таким образом, развитие кроветворных клеточных дифферонов протекает в неразрывной связи с микроокружением. Миелоидная и лимфоидная ткани являются разновидностями соединительной ткани, т. е. относятся к тканям внутренней среды. Ретикулоцитарный, адипоцитарный, тучнокле-точный и остеобластический диффероны вместе с межклеточным веществом (матриксом) формируют микроокружение для гемопоэтических диф-феронов. Гистологические элементы микроокружения и гемопоэтические клетки функционируют в неразрывной связи. Микроокружение оказывает воздействие на дифференцировку клеток крови (при контакте с их рецепторами или путем выделения специфических факторов). В миелоидной и лимфоидной тканях стромальные ретикулярные и гемопоэтические элементы образуют единое функциональное целое. В тимусе имеется сложная строма, представленная как соединительнотканными, так и ретикулоэпи-телиальными клетками. Эпителиальные клетки секретируют особые вещества - тимозины, оказывающие влияние на дифференцировку из СКК Т-лимфоцитов. В лимфатических узлах и селезенке специализированные ретикулярные клетки создают микроокружение, необходимое для пролиферации и дифференцировки в специальных Т- и В-зонах Т- и В-лимфоцитов и плазмоцитов.

Контрольные вопросы

1. Гемограмма, лейкоцитарная формула: определение, количественные и качественные характеристики у здорового человека.

2. Основные положения унитарной теории кроветворения А. А. Максимова. Перечислить свойства стволовой кроветворной клетки.

3. Эритропоэз, стадии, роль клеточного микроокружения в дифферен-цировке клеток эритробластического дифферона.

4. Агранулоциты: морфологические и функциональные характеристики.

Кроветворение (гемоцитопоэз)процесс образования форменных элементов крови.

Различают два вида кроветворения:

миелоидное кроветворение:

  • эритропоэз;
  • гранулоцитопоэз;
  • тромбоцитопоэз;
  • моноцитопоэз.

лимфоидное кроветворение:

  • Т-лимфоцитопоэз;
  • В-лимфоцитопоэз.

Кроме того, гемопоэз подразделяется на два периода:

  • эмбриональный;
  • постэмбриональный.

Эмбриональный период гемопоэза приводит к образованию крови как ткани и потому представляет собой гистогенез крови . Постэмбриональный гемопоэз представляет собой процесс физиологической регенерации крови как ткани.

Эмбриональный период гемопоэза осуществляется поэтапно, сменяя разные органы кроветворения. В соответствии с этим эмбриональный гемопоэз подразделяется на три этапа:

  • желточный;
  • гепато-тимусо-лиенальный;
  • медулло-тимусо-лимфоидный.

Наиболее важными моментами желточного этапа являются:

  • образование стволовых клеток крови;
  • образование первичных кровеносных сосудов.

Несколько позже (на 3-ей неделе) начинают формироваться сосуды в мезенхиме тела зародыша, однако они являются пустыми щелевидными образованиями. Довольно скоро сосуды желточного мешка соединяются с сосудами тела зародыша, по этим сосудам стволовые клетки мигрируют в тело зародыша и заселяют закладки будущих кроветворных органов (в первую очередь печень), в которых затем и осуществляется кроветворение.

Гепато-тимусо лиенальный

этап гемопоэза осуществляется в начале в печени, несколько позже в тимусе (вилочковой железе), а затем и в селезенке. В печени происходит (только экстраваскулярно) в основном миелоидное кроветворение, начиная с 5-ой недели и до конца 5-го месяца, а затем постепенно снижается и к концу эмбриогенеза полностью прекращается. Тимус закладывается на 7-8-й неделе, а несколько позже в нем начинается Т-лимфоцитопоэз, который продолжается до конца эмбриогенеза, а затем в постнатальном периоде до его инволюции (в 25-30 лет). Процесс образования Т-лимфоцитов в этот момент носит название антиген независимая дифференцировка . Селезенка закладывается на 4-й неделе, с 7-8 недели она заселяется стволовыми клетками и в ней начинается универсальное кроветворение, то есть и миелоилимфопоэз. Особенно активно кроветворение в селезенке протекает с 5-го по 7-ой месяцы внутриутробного развития плода, а затем миелоидное кроветворение постепенно угнетается и к концу эмбриогенеза (у человека) оно полностью прекращается. Лимфоидное же кроветворение сохраняется в селезенке до конца эмбриогенеза, а затем и в постэмбриональном периоде.

Следовательно, кроветворение на втором этапе в названных органах осуществляется почти одновременно, только экстраваскулярно, но его интенсивность и качественный состав в разных органах различны.

Медулло-тимусо-лимфоидный этап кроветворения

Закладка красного костного мозга начинается со 2-го месяца, кроветворение в нем начинается с 4-го месяца, а с 6-го месяца он является основным органом миелоидного и частично лимфоидного кроветворения, то есть является универсальным кроветворным органом. В то же время в тимусе, в селезенке и в лимфатических узлах осуществляется лимфоидное кроветворение. Если красный костный мозг не в состоянии удовлетворить возросшую потребность в форменных элементах крови (при кровотечении), то гемопоэтическая активность печени, селезенки может активизироваться - экстрамедуллярное кроветворение.

Постэмбриональный период кроветворения - осуществляется в красном костном мозге и лимфоидных органах (тимусе, селезенке, лимфатических узлах, миндалинах, лимфоидных фолликулах).

Сущность процесса кроветворения заключается в пролиферации и поэтапной дифференцировке стволовых клеток в зрелые форменные элементы крови.

Теории кроветворения

  • унитарная теория (А. А. Максимов, 1909 г.) - все форменные элементы крови развиваются из единого предшественникастволовой клетки;
  • дуалистическая теория предусматривает два источника кроветворения, для миелоидного и лимфоидного;
  • полифилетическая теория предусматривает для каждого форменного элемента свой источник развития.

В настоящее время общепринятой является унитарная теория кроветворения, на основании которой разработана схема кроветворения (И. Л. Чертков и А. И. Воробьев, 1973 г.).

В процессе поэтапной дифференцировки стволовых клеток в зрелые форменные элементы крови в каждом ряду кроветворения образуются промежуточные типы клеток, которые в схеме кроветворения составляют классы клеток.

Всего в схеме кроветворения различают 6 классов клеток:

  • 1 класс - стволовые клетки;
  • 2 класс - полустволовые клетки;
  • 3 класс - унипотентные клетки;
  • 4 класс - бластные клетки;
  • 5 класс - созревающие клетки;
  • 6 класс - зрелые форменные элементы.

1 класс - стволовая полипотентная клетка, способная к поддержанию своей популяции.

По морфологии соответствует малому лимфоциту, является полипотентной , то есть способной дифференцироваться в любой форменный элемент крови. Направление дифференцировки стволовой клетки определяется уровнем содержания в крови данного форменного элемента, а также влиянием микроокружения стволовых клеток - индуктивным влиянием стромальных клеток костного мозга или другого кроветворного органа. Поддержание численности популяции стволовых клеток обеспечивается тем, что после митоза стволовой клетки одна из дочерних клеток становится на путь дифференцировки, а другая принимает морфологию малого лимфоцита и является стволовой. Делятся стволовые клетки редко (1 раз в полгода), 80 % стволовых клеток находятся в состоянии покоя и только 20 % в митозе и последующей дифференцировке. В процессе пролиферации каждая стволовая клетка образует группу или клон клеток и потому стволовые клетки в литературе нередко называются колоние-образующие единицы - КОЕ.

2 класс - полустволовые

ограниченно полипотентные (или частично коммитированные) клетки-предшественницы миелопоэза и лимфопоэза. Имеют морфологию малого лимфоцита. Каждая из них дает клон клеток, но только миелоидных или лимфоидных. Делятся они чаще (через 3-4 недели) и также поддерживают численность своей популяции.

3 класс - унипотентные поэтин-чувствительные клетки

Предшественницы своего ряда кроветворения. Морфология их также соответствует малому лимфоциту. Способны дифференцироваться только в один тип форменного элемента. Делятся часто, но потомки этих клеток одни вступают на путь дифференцировки, а другие сохраняют численность популяции данного класса. Частота деления этих клеток и способность дифференцироваться дальше зависит от содержания в крови особых биологически активных веществ - поэтинов , специфичных для каждого ряда кроветворения (эритропоэтины, тромбопоэтины и другие).

Первые три класса клеток объединяются в класс морфологически неидентифицируемых клеток, так как все они имеют морфологию малого лимфоцита, но потенции их к развитию различны.

4 класс - бластные

(молодые) клетки или бласты (эритробласты, лимфобласты и так далее). Отличаются по морфологии как от трех предшествующих, так и последующих классов клеток. Эти клетки крупные, имеют крупное рыхлое (эухроматин) ядро с 2 4 ядрышками, цитоплазма базофильна за счет большого числа свободных рибосом. Часто делятся, но дочерние клетки все вступают на путь дальнейшей дифференцировки. По цитохимическим свойствам можно идентифицировать бласты разных рядов кроветворения.

5 класс - класс созревающих клеток

Характерных для своего ряда кроветворения. В этом классе может быть несколько разновидностей переходных клеток - от одной (пролимфоцит, промоноцит), до пяти в эритроцитарном ряду. Некоторые созревающие клетки в небольшом количестве могут попадать в периферическую кровь (например, ретикулоциты, юные и палочкоядерные гранулоциты).

6 класс - зрелые форменные элементы крови

Однако следует отметить, что только эритроциты, тромбоциты и сегментоядерные гранулоциты являются зрелыми конечными дифференцированными клетками или их фрагментами. Моноцитыне окончательно дифференцированные клетки. Покидая кровеносное русло, они дифференцируются в конечные клетки - макрофаги . Лимфоциты при встрече с антигенами, превращаются в бласты и снова делятся.

В Т- и в В-лимфоцитопоэзе выделяют три этапа:

  • костномозговой этап;
  • этап антиген-независимой дифференцировки, осуществляемый в центральных иммунных органах;
  • этап антиген-зависимой дифференцировки, осуществляемый в периферических лимфоидных органах.

Первый этап Т-лимфоцитопоэза осуществляется в лимфоидной ткани красного костного мозга, где образуются следующие классы клеток:

  • 1 класс - стволовые клетки;
  • 2 класс - полустволовые клетки-предшественницы лимфоцитопоэза;
  • 3 класс - унипотентные Т-поэтинчувствительные клетки-предшественницы Т-лимфоцитопоэза, эти клетки мигрируют в кровеносное русло и с кровью достигают тимуса.

Второй этап - этап антигеннезависимой дифференцировки осуществляется в корковом веществе тимуса. Здесь продолжается дальнейший процесс Т-лимфоцитопоэза. Под влиянием биологически активного вещества тимозина , выделяемого стромальными клетками, унипотентные клетки превращаются в Т-лимфобласты - 4 класс, затем в Т-пролимфоциты - 5 класс, а последние в Т-лимфоциты - 6 класс.

Третий этап - этап антигенезависимой дифференцировки осуществляется в Т-зонах периферических лимфоидных органов - лимфоузлов, селезенки и других, где создаются условия для встречи антигена с Т-лимфоцитом (киллером, хелпером или супрессором), имеющим рецептор к данному антигену.

Первый этап В-лимфоцитопоэза осуществляется в красном костном мозге, где образуются следующие классы клеток:

  • 1 класс - стволовые клетки;
  • 2 класс - полустволовые клетки-предшественницы лимфопоэза;
  • 3 класс - унипотентные В-поэтинчувствительные клетки-предшественницы В-лимфоцитопоэза.

Второй этап антигеннезависимой дифференцировки у птиц осуществляется в специальном центральном лимфоидном органе - фабрициевой сумке.

Третий этап - антигензависимая дифференцировка осуществляется в В-зонах периферических лимфоидных органов (лимфатических узлов, селезенки и других) где происходит встреча антигена с соответствующим В-рецепторным лимфоцитом, его последующая активация и трансформация в иммунобласт.

  • 63.Развитие, строение, количество и функциональное значение эозинофильных лейкоцитов.
  • 64.Моноциты. Развитие, строение, функции и количество.
  • 65.Развитие, строение и функциональное значение нейтрофильных лейкоцитов.
  • 66. Развитие кости из мезенхимы и на месте хряща.
  • 67.Строение кости как органа. Регенерация и трансплантация костей.
  • 68.Строение пластинчатой и ретикулофиброзной костной ткани.
  • 69.Костные ткани. Классификация, развитие, строение и изменения под влиянием факторов внешней и внутренней среды. Регенерация. Возрастные изменения.
  • 70.Хрящевые ткани. Классификация, развитие, строение, гистохимическая характеристика и функция. Рост хрящей, регенерация и возрастные изменения.
  • 72. Регенерация мышечных тканей.
  • 73.Поперечнополосатая сердечная мышечная ткань. Развитие, строение типичных и атипичных кардиомиоцитов. Особенности регенерации.
  • 74.Поперечнополосатая мышечная ткань скелетного типа. Развитие, строение. Структурные основы сокращение мышечного волокна.
  • 76.Нервная ткань. Общая морфофункциональная характеристика.
  • 77.Гистогенез и регенерация нервной ткани.
  • 78.Миелиновые и безмиелиновые нервные волокна. Строение и функция. Процесс миелинизации.
  • 79.Нейроциты, их классификация. Морфологическая и функциональная характеристика.
  • 80.Строение чувствительных нервных окончаний.
  • 81.Строение двигательных нервных окончаний.
  • 82.Межнейральные синапсы. Классификация, строение и гостофизиология.
  • 83.Нейроглия. Классификация, развитие, строение и функция.
  • 84.Олигодендроглия, ее местоположение, развитие и функциональное значение.
  • 88.Парасимпатический отдел нервной системы, его представительство в составе цнс и на периферии.
  • 89.Спинальные нервные узлы. Развитие, строение и функции.
  • 60. Гемограмма и лейкоцитарная формула. Возрастные особенности. Значение в диагностике заболеваний.

    В медицинской практике анализ крови играет большую роль. При клинических анализах исследуют химический состав крови, определяют количество эритроцитов, лейкоцитов, гемоглобина, резистентность эритроцитов, быстроту их оседания – скорость оседания эритроцитов (СОЭ) и др.

    Качественный состав крови (анализ крови) определяется такими понятиями, как гемограмма и лейкоцитарная формула.

    Гемограмма – количественное содержание форменных элементов крови в одном литре.

    Лейкоцитарная формула – это процентное содержание отдельных форм лейкоцитов.

    Возрастные изменения в крови.

    Число эритроцитов в момент рождения и в первые часы жизни выше, чем у взрослого человека, и достигает 6,0 – 7,0х10^12 в 1 л. К 10-14 сут оно равно тем же цифрам, что и во взрослом организме.

    В последующие сроки происходит снижение числа эритроцитов с минимальными показателями на 3-6 м месяце жизни (физиологическая анемия). Число эритроцитов становится таким же, как и во взрослом организме, в период полового созревания. Для новорожденных характерно наличие анизоцитоза (разнообразие размеров) с преобладанием макроцитов, увеличенное содержание ретикулоцитов, а также присутствие незначительного числа ядросодержащих предшественников эритроцитов.

    Число лейкоцитов у новорожденных увеличено и достигает 10,0 – 30,0х10^9 в 1 л.

    В течение 2 нед после рождения число их падает до 9,0-15,0х10^9 в 1 л. Количество лейкоцитов достигает к 14-15 годам уровня, который сохраняется у взрослого. Соотношение числа нейтрофилов и лимфоцитов у новорожденного такое же, как и у взрослых, - 4,5 – 9,0х10^9 в 1 л.

    В последующие сроки содержание лимфоцитов возрастает, а нейтрофилов падает, и, т.о., к 4-м суткам количество этих видов лейкоцитов уравнивается (первый физиологический перекрест лейкоцитов). Дальнейший рост числа лимфоцитов и падение нейтрофилов приводят к тому, что на 1-2 году жизни лимфоциты составляют 65%, а нейтрофилы – 25%. Новое снижение числа лимфоцитов и повышение нейтрофилов приводят к выравниванию обоих показателей у 4-летних детей (второй физиологический перекрест). Постепенное снижение содержания лимфоцитов и повышение нейтрофилов продолжаются до полового созревания, когда количество этих видов лейкоцитов достигает нормы взрослого.

    61.Этапы кроветворения в эмбриональном и постэмбриональных периодах развития.

    Гемопоэз – развитие крови. Различают эмбриональный гемопоэз, который происходит в эмбриональный период и приводит к развитию крови как ткани, и постэмбриональный гемопоэз, который представляет собой процесс физиологической регенерации крови.

    Эмбриональный гемопоэз.

    В развитии крови как ткани в эмбриональный период можно выделить 3 основных этапа:

      Мезобластический (желточный), когда начинается развитие клеток крови во внезародышевых органах и появляется первая регенерация стволовых клеток крови. (с 3-й по 9-ю неделю)

      Печеночный (гепатотимусолиенальный), который начинается в печени с 5-6-й недели развития плода, когда печень становится основным органом гемопоэза, в ней образуется вторая регенерация СКК. Кроветворение в печени достигает максимума через 5 мес и завершается перед рождением.

      Медуллярный (костномозговой) (медулло-тимусолимфоидный)– появление третьей генерации СКК в костном мозге, где гемопоэз начинается с 10-й недели и постепенно нарастает к рождению, а после рождения красный костный мозг становится центральным органом гемопоэза.

    Желточный этап.

    Начиная со 2-3 недели эмбриогенеза, в мезенхиме желточного мешка в результате пролиферации мезенхимных клеток образуются «кровяные островки», представляющие собой очаговые скопления мезенхимных клеток. Затем происходит дивергентная дифференцировка этих клеток. Периферические клетки, ограничивающие островки, уплощаются, соединяются между собой и образуют эндотелиальную выстилку сосуда. Центральные клетки округляются, превращаясь в стволовые кроветворные клетки. Из этих клеток в сосудах, т.е. интраваскулярно начинается процесс образования первичных эритроцитов. Они характеризуются:

    Крупными размерами и называются мегалобластами. В их цитоплазме накапливается гемоглобин, ядро у некоторых удаляется, а в других сохраняется. В результате образуются первичные эритроциты, отличающиеся бОльшими, чем у нормацитов размерами;

    Наличием ядра;

    Такой тип кроветворения называется мегабластическим. Он характерен для ранних этапов эмбриогенеза. Одновременно начинается нормобластическое кроветворение с образованием нормоцитов, содержащих фетальный гемоглобин.

    Часть стволовых клеток оказывается вне сосудов (экстраваскулярно) и из них начинают развиваться зернистые лейкоциты, которые затем мигрирует в сосуды.

    Начиная с 4-й недели эмбриогенеза желточный этап кроветворения угасает и к концу 3-го месяца он полностью прекращается.

    Итог этапа – образование стволовых клеток крови первой генерации.

    На 3-й неделе в мезенхиме тела зародыша начинают формироваться сосуды. На первых порах они являются пустыми щелевидными образованиями. Из желточного мешка СКК мигрируют в тело зародыша и заселяют закладки будущих кроветворных органов.

    Второй этап – гепатотимусолиенальный начинается на 5-й неделе эмбриогенеза в печени, экстраваскулярно – по ходу капилляров, врастающих с мезенхимой внутрь печени. В печени активно развиваются стволовые клетки второй генерации и из них образуются эритроциты и гранулоциты до конца 5-го месяца, затем процесс гемоцитопоэза там постепенно снижается. Тимус начинает заселяться СКК, начиная с 7-8 недели, дает начало Т-лимфоцитам.

    Селезенка заселяется СКК на 7-8 неделе, в ней экстраваскулярно начинается универсальное кроветворение, т.е. происходит миело- и лимфоцитопоэз. Особенно активно кроветворение происходит в селезенке с 5 по 7-й месяцы, затем миелоидное кроветворение постепенно угасает и к концу эмбриогенеза оно полностью прекращается. Лимфоидное кроветворения осуществляется здесь как в эмбриогенезе, так и в постнатальном периоде.

    Третий период эмбрионального кроветворения – медулло-тимусолиенальный. Закладка костного мозга осуществляется во 2-м месяце эимбриогенезе. Кроветворение в нем начинается с 4-го месяца закладка СКК третьей генерации, а с 6-го месяца он является основным органом миелоидного и частично лимфоидного кроветворения, т.е. органом универсального гемоцитопоэза. В это же время в тимусе, селезенке и лимфатических узлах происходит лимфоидное кроветворение.

    Постэмбриональный гемопоэз.

    Постэмбриональный гемопоэз представляет собой процесс физиологической регенерации крови. (клеточное обновление), который компенсирует физиологическое разрушение дифференцированных клеток.

    Общая гистология - кроветворение

    Кроветворением, или гемопоэзом, называют развитие крови. Различают эмбриональный гемопоэз, который происходит в эмбриональный период и приводит к развитию крови как ткани, и постэмбриональный гемопоэз, который представляет собой процесс физиологической регенерации крови.

    Развитие эритроцитов называют эритропоэзом, развитие гранулоцитов - гранулоцитопоэзом, тромбоцитов - тромбоцитопоэзом, моноцитов - моноцитопоэзом, развитие лимфоцитов и иммуноцитов - лимфоцито- и иммуноцитопоэзом.
    Эмбриональный гемопоэз

    В развитии крови как ткани в эмбриональный период можно выделить 3 основных этапа, последовательно сменяющих друг друга – мезобластический, гепатолиенальный и медуллярный.

    Первый, мезобластический этап – это появление клеток крови во внезародышевых органах, а именно в мезенхиме стенки желточного мешка, мезенхиме хориона и стебля. При этом появляется первая генерация стволовых клеток крови (СКК). Мезобластический этап протекает с 3-й по 9-ю неделю развития зародыша человека.

    Второй, гепатолиенальный этап начинается с 5-6-й недели развития плода, когда печень становится основным органом гемопоэза, в ней образуется вторая генерация стволовых клеток крови. Кроветворение в печени достигает максимума через 5 мес и завершается перед рождением. СКК печени заселяют тимус, селезенку и лимфатические узлы.

    Третий, медуллярный (костномозговой) этап - это появление третьей генерации стволовых клеток крови в красном костном мозге, где гемопоэз начинается с 10-й недели и постепенно нарастает к рождению. После рождения костный мозг становится центральным органом гемопоэза.

    Рассмотрим подробнее особенности гемопоэза в стенке желточного мешка, в печени, в тимусе, селезенке, лимфатических узлах и в костном мозге.
    Кроветворение в стенке желточного мешка

    В мезенхиме стенки желточного мешка обособляются зачатки сосудистой крови, или кровяные островки. В них мезенхимные клетки округляются, теряют отростки и преобразуются в стволовые клетки крови. Клетки, ограничивающие кровяные островки, уплощаются, соединяются между собой и образуют эндотелиальную выстилку будущего сосуда. Часть стволовых клеток дифференцируется в первичные клетки крови (бласты). Большинство первичных кровяных клеток митотически делится и превращается в первичные эритробласты, характеризующиеся крупным размером – мегалобласты. Это превращение совершается в связи с накоплением эмбрионального гемоглобина (HbF) в цитоплазме бластов. В некоторых первичных эритробластах ядро подвергается кариорексису и удаляется из клеток, в других ядро сохраняется. В результате образуются безъядерные и ядросодержащие первичные эритроциты, отличающиеся большим размером по сравнению с нормоцитами и поэтому получившие название мегалоцитов. Такой тип кроветворения называется мегалобластическим. Он характерен для эмбрионального периода, но может появляться в постнатальном периоде при некоторых заболеваниях.

    Наряду с мегалобластическим в стенке желточного мешка начинается нормобластическое кроветворение, при котором из бластов образуются вторичные эритробласты, из которых образуются вторичные эритроциты (нормоциты).

    Развитие эритроцитов в стенке желточного мешка происходит внутри первичных кровеносных сосудов, т.е. интраваскулярно. Одновременно экстраваскулярно из бластов, расположенных вокруг сосудистых стенок, дифференцируется небольшое количество гранулоцитов - нейтрофилов и эозинофилов.

    Часть СКК остается в недифференцированном состоянии и разносится током крови по различным органам зародыша, где происходит их дальнейшая дифференцировка в клетки крови или соединительной ткани. После редукции желточного мешка основным кроветворным органом временно становится печень.
    Кроветворение в печени

    Печень закладывается примерно на 3-4-й неделе эмбриональной жизни, а с 5-й недели она становится центром кроветворения. Кроветворение в печени происходит экстраваскулярно, - по ходу капилляров, врастающих вместе с мезенхимой внутрь печеночных долек. Источником кроветворения в печени являются стволовые клетки крови, из которых образуются бласты, дифференцирующиеся во вторичные эритроциты.

    Одновременно с развитием эритроцитов в печени образуются зернистые лейкоциты, главным образом нейтрофильные и эозинофильные.

    Кроме гранулоцитов, в печени формируются гигантские клетки - мегакариоциты, - предшественники тромбоцитов. К концу внутриутробного периода кроветворение в печени прекращается.
    Кроветворение в тимусе

    Тимус закладывается в конце 1-го месяца внутриутробного развития, и на 7-8-й неделе его эпителий начинает заселяться стволовыми клетками крови, которые дифференцируются в лимфоциты тимуса. Увеличивающееся число лимфоцитов тимуса дает начало T-лимфоцитам, заселяющим T-зоны периферических органов иммунопоэза.
    Кроветворение в селезенке

    Закладка селезенки также происходит в конце 1-го месяца эмбриогенеза. Из вселяющихся сюда стволовых клеток происходит экстраваскулярное образование всех видов форменных элементов крови, т.е. селезенка в эмбриональном периоде представляет собой универсальный кроветворный орган. Образование эритроцитов и гранулоцитов в селезенке достигает максимума на 5-м месяце эмбриогенеза. После этого в ней начинает преобладать лимфоцитопоэз.
    Кроветворение в лимфатических узлах

    Первые закладки лимфоузлов человека появляются на 7-8-й неделе эмбрионального развития. Большинство лимфатических узлов развивается на 9-10-й неделе. В этот же период начинается проникновение в лимфатические узлы стволовых клеток крови, из которых на ранних стадиях дифференцируются эритроциты, гранулоциты и мегакариоциты. Однако формирование этих элементов быстро подавляется образованием лимфоцитов, составляющих основную часть лимфатических узлов.

    Появление единичных лимфоцитов происходит уже в течение 8-15-й недели развития, однако массовое «заселение» лимфатических узлов предшественниками T- и B-лимфоцитов начинается с 16-й недели, когда формируются посткапиллярные венулы, через стенку которых осуществляется процесс миграции клеток. Из клеток-предшественников дифференцируются сначала лимфобласты (или большие лимфоциты), а далее средние и малые лимфоциты. Дифференцировка T- и B-лимфоцитов происходит, соответственно, в T- и B-зависимых зонах лимфатических узлов.
    Кроветворение в костном мозге

    Закладка костного мозга осуществляется на 2-м месяце эмбрионального развития. Первые гемопоэтические элементы появляются на 12-й неделе развития; в это время основную массу их составляют эритробласты и предшественники гранулоцитов. Из СКК в костном мозге формируются все форменные элементы крови, развитие которых происходит экстраваскулярно. Часть СКК сохраняется в костном мозге в недифференцированном состоянии. Они могут расселяться по другим органам и тканям и являться источником развития клеток крови и соединительной ткани.

    Таким образом, костный мозг становится центральным органом, осуществляющим универсальный гемопоэз, и остается им в течение постнатальной жизни. Он обеспечивает стволовыми кроветворными клетками тимус и другие гемопоэтические органы.
    Постэмбриональный гемопоэз

    Постэмбриональный гемопоэз представляет собой процесс физиологической регенерации крови, который компенсирует физиологическое разрушение дифференцированных клеток. Он подразделяется на миелопоэз и лимфопоэз.

    Миелопоэз происходит в миелоидной ткани, расположенной в эпифизах трубчатых и полостях многих губчатых костей. Здесь развиваются эритроциты, гранулоциты, моноциты, тромбоциты, а также предшественники лимфоцитов. В миелоидной ткани находятся стволовые клетки крови и соединительной ткани. Предшественники лимфоцитов постепенно мигрируют и заселяют тимус, селезенку, лимфоузлы и некоторые другие органы.

    Лимфопоэз происходит в лимфоидной ткани, которая имеет несколько разновидностей, представленных в тимусе, селезенке, лимфоузлах. Она выполняет функции образования T- и B-лимфоцитов и иммуноцитов (например, плазмоцитов).

    Миелоидная и лимфоидная ткани являются разновидностями соединительной ткани, т.е. относятся к тканям внутренней среды. В них представлены две основные клеточные линии - клетки ретикулярной ткани и гемопоэтические клетки.

    Ретикулярные, а также жировые, тучные и остеогенные клетки вместе с межклеточным веществом формируют микроокружение для гемопоэтических элементов. Структуры микроокружения и гемопоэтические клетки функционируют в неразрывной связи друг с другом. Микроокружение оказывает воздействие на дифференцировку клеток крови (при контакте с их рецепторами или путем выделения специфических факторов).

    Таким образом, для миелоидной и всех разновидностей лимфоидной ткани характерно наличие стромальных и гемопоэтических элементов, образующих единое функциональное целое.

    СКК относятся к самоподдерживающейся популяции клеток. Они редко делятся. Выявление СКК стало возможным при применении метода образования клеточных колоний – потомков одной стволовой клетки.

    Пролиферативную активность СКК регулируют колониестимулирующие факторы (КСФ), различные виды интерлейкинов (ИЛ-3 и др.). Каждая СКК в эксперименте или лабораторном исследовании образует одну колонию и называется колониеобразующей единицей (сокращенно КОЕ, CFU).

    Исследование клеточного состава колоний позволило выявить две линии их дифференцировки. Одна линия дает начало мультипотентной клетке - родоначальнице гранулоцитарного, эритроцитарного, моноцитарного и мегакариоцитарного рядов гемопоэза (сокращенно КОЕ-ГЭММ). Вторая линия дает начало мультипотентной клетке - родоначальнице лимфопоэза (КОЕ-Л).

    Из мультипотентных клеток дифференцируются олигопотентные (КОЕ-ГМ) и унипотентные родоначальные клетки. Методом колониеобразования определены родоначальные унипотентные клетки для моноцитов (КОЕ-М), нейтрофильных гранулоцитов (КОЕ-Гн), эозинофилов (КОЕ-Эо), базофилов (КОЕ-Б), эритроцитов (БОЕ-Э и КОЕ-Э), мегакариоцитов (КОЕ-МГЦ), из которых образуются клетки-предшественники. В лимфопоэтическом ряду выделяют унипотентные клетки - предшественницы для B-лимфоцитов и для T-лимфоцитов. Полипотентные (плюрипотентные и мультипотентные), олигопотентные и унипотентные клетки морфологически не различаются.

    Все приведенные выше стадии развития клеток составляют четыре основных класса, или компартмента, гемопоэза:
    I класс - СКК - стволовые клетки крови (плюрипотентные, полипотентные);
    II класс - КОЕ-ГЭММ и КОЕ-Л - коммитированные мультипотентные клетки (миелопоэза или лимфопоэза);
    III класс - КОЕ-М, КОЕ-Б и т.д. - коммитированные олигопотентные и унипотентные клетки;
    IV класс - клетки-предшественники (бласты, напр.: эритробласт, мегакариобласт и т.д.).

    Сразу отметим, что оставшиеся два класса гемопоэза составляют созревающие клетки (V класс) и зрелые клетки крови (VI класс).

    Эритропоэз у млекопитающих и человека протекает в костном мозге в особых морфофункциональных ассоциациях, получивших название эритробластических островков. Эритробластический островок состоит из макрофага, окруженного одним или несколькими кольцами эритроидных клеток, развивающихся из унипотентной КОЕ-Э, вступившей в контакт с макрофагом. КОЕ-Э и образующиеся из нее клетки (от проэритробласта до ретикулоцита) удерживаются в контакте с макрофагом его рецепторами.

    У взрослого организма потребность в эритроцитах обычно обеспечивается за счет усиленного размножения эритробластов. Но всякий раз, когда потребность организма в эритроцитах возрастает (например, при потере крови), эритробласты начинают развиваться из предшественников, а последние - из стволовых клеток.

    В норме из костного мозга в кровь поступают только эритроциты и ретикулоциты.
    Регуляция гемопоэза

    Кроветворение регулируется:
    факторами роста, обеспечивающими пролиферацию и дифференцировку СКК и последующих стадий их развития,
    факторами транскрипции, влияющими на экспрессию генов, определяющих направление дифференцировки гемопоэтических клеток,
    витаминами, гормонами.

    Факторы роста включают колониестимулирующие факторы (КСФ), интерлейкины и ингибирующие факторы. Они являются гликопротеинами, действующими и как циркулирующие гормоны, и как местные медиаторы, регулирующие гемопоэз и дифференцировку специфических типов клеток. Почти все факторы роста действуют на СКК, КОЕ, коммитированные и зрелые клетки. Однако отмечаются индивидуальные особенности действия этих факторов на клетки-мишени.

    КСФ действуют на специфические клетки или группы клеток на различных стадиях дифференцировки. Например, фактор роста стволовых клеток влияет на пролиферацию и миграцию СКК в эмбриогенезе. В постнатальном периоде на гемопоэз оказывают влияние несколько КСФ, среди которых наиболее изучены факторы, стимулирующие развитие гранулоцитов и макрофагов (ГМ-КСФ, Г-КСФ, М-КСФ), а также интерлейкины.

    Большинство указанных факторов выделено и применяется для лечения различных болезней. Для получения их используются биотехнологические методы.

    Дифференцировка полипотентных клеток в унипотентные определяется действием ряда специфических факторов, поэтинов - эритропоэтинов (для эритробластов), гранулопоэтинов (для миелобластов), лимфопоэтинов (для лимфобластов), тромбопоэтинов (для мегакариобластов).

    Большая часть эритропоэтина образуется в почках. Его образование регулируется содержанием в крови кислорода, которое зависит от количества циркулирующих в крови эритроцитов. Снижение числа эритроцитов и соответственно парциального давления кислорода, является сигналом для увеличения продукции эритропоэтина. Эритропоэтин действует на чувствительные к нему КОЕ-Э, стимулируя их пролиферацию и дифференцировку, что в конечном итоге приводит к повышению содержания в крови эритроцитов.

    Тромбопоэтин синтезируется в печени, стимулирует пролиферацию КОЕ-МГЦ, их дифференцировку и образование тромбоцитов.

    Ингибирующие факторы дают противоположный эффект, т.е. тормозят гемопоэз; их недостаток может быть одной из причин лейкемии, характеризующейся значительным увеличением числа лейкоцитов в крови. Выделен ингибирующий лейкемию фактор (ЛИФ), который тормозит пролиферацию и дифференцировку моноцитов-макрофагов.

    Витамины необходимы для стимуляции пролиферации и дифференцировки гемопоэтических клеток. Витамин В12 поступает с пищей и соединяется с внутренним фактором (Касла), который синтезируется париетальными клетками желудка. Образуемый при этом комплекс, в присутствии ионов Са2+, соединяется с рецепторами эпителиоцитов подвздошной кишки и всасывается. При всасывании в эпителиоциты поступает лишь витамин В12, а внутренний фактор освобождается. Витамин В12 поступает с кровью в костный мозг, где влияет на гемопоэз, и в печень, где может депонироваться. Нарушение процесса всасывания при различных заболеваниях желудочно-кишечного тракта может служить причиной дефицита витамина В12 и нарушений в гемопоэзе.
    Некоторые термины из практической медицины:
    анемия (син. малокровие) -- состояние, характеризующееся снижением содержания гемоглобина в единице объема крови, чаще при одновременном уменьшении количества эритроцитов;
    анемия ахрестическая -- общее название анемий, развивающихся вследствие неспособности эритробластов костного мозга использовать какие-либо антианемические факторы (цианокобаламин, фолиевую кислоту, железо и др.) при их нормальном поступлении в организм;
    хлороз ранний (син.: бледная немочь, хлороз ювенильный) -- железодефицитная анемия у девушек в период полового созревания, проявляющаяся алебастровой бледностью кожи с зеленоватым оттенком, извращением вкуса, олигоменореей;
    хлороз поздний (син. анемия железодефицитная эссенциальная) -- железодефицитная анемия у женщин в возрасте старше 30 лет, обычно связанная с маточными или другими кровотечениями, проявляющаяся извращением вкуса и обоняния, признаками атрофии слизистой оболочки полости рта и пищевода, выпадением волос, искривлением ногтей, позже - выраженными признаками анемии;

    Вены безмышечного типа в стенке имеют эндотелий, подэндотелиальный слой, средняя оболочка невыраженна, более выражена наружная оболочка. Они располагаются в костях, плаценте, твердой и мягкой мозговой оболочке, сетчатке, селезенке. Из них кровь течет по д силой собственной тяжести/сокращения мышечных компонентов органа.

    Вены мышечного типа со слабым развитием мышечных элементов (голова, шея. верхняя полая вена) в стенке имеет эндотелий, подэндотелиальный слой, средняя оболочка содежит небольшое количество гладких миоцитов, наружная – адвентициальная. Со средним развитием мышечных элементов (верхняя часть туловища, верхние конечности) – внутренняя оболочка без особенностей и имеет на границе алистические волокна. Средняя оболчка имеет циркулярно расположенные пучки миоцитов; наружная – без особенностей. Вены с сильно развитыми мышечными элементами (все что ниже сердца) в среднем слое имеет больше мышечных элементов, гладкие миоциты встречаются во внутреннем и наружном слоях.

      Сердце. Источники эмбрионального развития, Гистофизиология и регенерация.

    Сердце – основной орган, приводящий в движение кровь. Источники развития: мезенхима образует эндокард, висцеральный листок спланхотома – миокард и эпикард. В стенке различают 3 оболочки: 1) эндокард – содержит эндотелий, подэндотелиальный слой, мышечно-эластический слой, наружный соединительнотканный слой. 2) миокард – образован типичными, атипичными и секреторными кардиомицитами. М/у волокнами имеются прослойки соединительной ткани с сосудами. В предсердии 2 слоя миокард (продольный и циркулярный), в желудочках – 3слоя. атипичные кардиомиоциты составляют проводящую систему. 3) эпикард – висцеральный листок перикарда.

      Гемопоэз. Определение понятия. Органы кроветворения и иммуногенеза. Общая морфофункциональная характеристика и классификация.

    Гемопоэз – развитие крови. Различают эмбриональный (происходит в эмбриональный период) и постэмбриональный (процесс физиологической регенерации крови) гемопоэз.

    В эмбриональном гемопоэзе выделяют 3 этапа: мезобластический, печеночный, медуллярный (костномозговой). В этот период органами кроветворения являются желточный мешок, тимус, красный костный мозг.

    Органы кроветворения делят на: центральные (тимус, красный костный мозг) – антиген независимые; периферические – антиген зависимые (миндалины, селезенка, лимфатические узлы, лимфатические узелки).

      Эмбриональный гемопоэз. Основные этапы кроветворения в эмбриогенезе.

    Выделяют 3 этапа, сменяющих последовательно друг друга: 1) мезобластический – развитие клеток крови начинается во внезадорышевых органах – мезенхиме стенки желточного мешка, хориона (с 3 по 9 неделю развития зародыша) и появляется первая генерация стволовых клеток крови (СКК). Наружные клетки дифференцируются в эндотелиальные клетки кровеносных сосудов; внутренние клетки дифференцируются в первичные эритробласты (мегалобласты) – мегалобластический тип и интраваскулярным. Клетки крупные, содрежат ядра, мало гемоглобина. За пределами сосудов, в стенке желточного мешка, образуются гранулоциты (нейтрофилы, эозинофилы) – экстраваскулярный тип. 2) печеночный – начинается в печени с 5-6 недели развития плода, когда печень становится основным органом гемопоэза, в ней образуется вторая генерация СКК. Кроветворение в печени завершается перед рождением. СКК заселяют тимус (с 7-8 недели развиваются Т-лимфоциты), селезенку (с 12 нед.) и лимфатические узлы (с 10 нед.). Мегалобластический тип меняется на нормобластический тип кроветворения, остается только экстраваскулярным. Эритроциты выбрасывают ядро, в них увеличивается содержание гемоглобина, цитоплазма становится оксифильной. Здесь т.ж. образуются зернистые лейкоциты, мегакариоциты. Меняется микроокружение. 3) медуллярный (костномозговой) – появление 3ей генерации СКК в костном мозге, гемопоэз начинается с 10й нед и постепенно нарастает к рождению, а после рождения костный мозг становится центральным органом гемопоэза. В селезенке и лимфатических узлах к рождению появляются соединительнотканные капсулы и трабекулы, кровеносные сосуды. Остаются только очаги лимфоидной ткани.

      Постэмбриональный гемопоэз. Теория кроветворения. Современная схема кроветворения.

    Постэмбриональный гемопоэз – физиологическая ргенерация крови (клеточное обновление), которая компенсирует физиологическое разрушение дифференцированных клеток.

    Миелопоэз – происходит в миелоидной ткани, расположенной в эпифизах трубчатых и полостях многих губчатых костей. Здесь развиваются форменные элементы крови: эритроциты, гранулоциты, моноциты, кровяные пластинки, предшественники лимфоцитов. В миелоидной ткани находят СКК и СК соединительной ткани. Предшественники лимфоцитов постепенно мигрируют и заселяют тимус, селезенку, лимф-кие узлы и т.д.

    Лимфопоэз происходит в лимфоидной ткани, которая имеет несколько разновидностей, представленных в тимусе, селезенке, лимфатических узлах. Она выполняет основные функции: образовании Т- и В-лимфоцитов, иммуноцитов. Миелоидная и лимфоидная ткани являются разновидностями соединительной ткани, п.э. в них представлены 2 основные клеточные линии – клетки ретикулярной ткани и гемопоэтические.

    В основе схемы кроветворения лежит унитарная теория. Унитарная теория: родоначальницей всех клеток лежит 1 стволовая клетка, образующая 0,15 трлн клеток в сутки (250 млрд – эритроцитов, 250 млрд - лейкоцитов).

    Схему делят на 6 классов: 1) полипотентные клетки – предшественники СКК – лимфоцитоподобные, гетерогенные. Подразделяются на про-СКК (начинают пролиферировать при трансплотации), др.-СКК. кр.-СКК – пролиферируют кратковременно. Мультипотентны. МСК – мезнхимальные стоволовые клетки – микроокружение СКК, поддерживают и регулируют кроветворение.

    2) Частично детерминированные клетки – предшественники (полустволовые клетки): 2 типа – КОЕ (колония образующая единица)-М миелопоэза (эритроциты), КОЕ-Л лимфопоэза (белые клетки).

    3) Унипотентные КП (клетки предшественники) (олигопотентные): КОЕ-М миелопоэза – образует линии КОЕ-Г (гранулоциты), КОЕ-М (макрофаги), КОЕ-Э (эритроциты), КОЕ-Мгк (мегакариоциты), КОЕ-Т (тучные клетки). КОЕ-Л лимфопоэза: КП-В лимфоцитов, КП-Т лимфоцитов, КП-натуральные киллеры, КП-дендритные клетки.

    4) Пролиферирующие клетки – морфологически распознаваемы клетки. Бластные клетки.

    5) Созревающие клетки – происходит дифференцировка клеток. Клетки уменьшаются в размерах, изменяется форма ядра, меняется цвет цитоплазмы и ядра, появляется специфическая зернистость.

    6) Зрелые классы: бласттрансформация – только для Т- и В-лимфоцитов (взаимодействие рецепторного поля в 5 классе) обмен рецепторными полями.

      Эритропоэз и тромбоцитопоэз в эмбриональном и постэмбрио­нальном периодах.

    Родоначальницей эритроидных клеток является полипотентная СКК, способная формировать в культуре костного мозга колонии. Дифференцирующаяся полипотентная СКК дает 2 типа мультипотентных частично коммитированных СКК: 1) коммитированные к лимфоидному типу дифференцировки; 2) КОЕ-ГЭММ – единицы, образующие смешанные колонии, состоящие из гранулоцитов, эритроцитов, моноцитов и мегакариоцитов. Из второго типа мультипотентных СКК дифференцируются унипотентные единицы: буретообразующая (БОЕ-Э) и колониеобразующая (КОЕ-Э) эритроидные клетки, которые являются коммитированными родоначальными клетками эритропоэза. БОЕ-Э – наиболее примитивные клетки – предшественники эритроцитов, которые способны гнерировать тысячи эритроидных предшественников. Они содержатся в малом количестве в костном мозге и крови благодаря частичному самоподдержанию и миграции из компармента мультипотентных СКК. КОЕ-Э является более зрелой клеткой, образующейся из пролиферирующей БОЕ-Э. Под влиянием эритропоэтина (гликопротеиновый гормон) КОЕ-Э дифференцируются в проэритробласты, из которых образуются эритробласты, ретикулоциты и эритроциты. Образующиеся из КОЕ-Э эритроидные клетки морфологически идентифицируются.

    Кровяные пластинки образуются в костном мозге из мегакариоцитов – гигантских по величине клеток, которые дифференцируются из СКК, проходя ряд стадий: СКК – КОЕ-ГЭММ – КОЕ-МГЦ – мегакариобласт – промегакариобласт – мегакариоцит – тромбоциты (кровяные пластинки). Весь период образования тромбоцитов составляет примерно 10 дней.

      Лейкоцитопоэз в эмбриональном и постэмбриональном периодах.

    Источником для гранулоцитопоэза являя.тся СКК и мультипотентные КОЕ-ГЭММ, одновременно начинающие дифференцироваться ч/з ряд промежуточных стадий в трех различных направлениях и образующие гранулоциты 3х видов: нейтрофилы, эозинофилы, базофилы. Основные ряды для каждой из групп гранулоцито слагаются из следующих клеточных форм: СКК – КОЕ-ГЭММ – КОЕ-ГМ – унипотентные предшественники (КОЕ-Б, КОЕ-Эо, КОЕ-Гн) – миелобласт – промиелоцит – миелоцит – метамиелоцит – палочкоядерный гранулоцит – сегментоядерный гранулоцит. По мере созревания гранулоцитов клетки уменьшаются в размерах, изменяется форма их ядер от округлой до сегментированной, в цитоплазме накапливается специфическая зернистость.

    Образование моноцитов: СКК – КОЕ-ГЭММ – КОЕ-ГМ – унипотентные предшественники моноцитов (КОЕ-М) – монобласт – промоноцит – моноцит. Моноциты из крови поступают в ткани, где являются источником развития различных видов макрофагов.

    Лимфоцитопоэз проходит следующие стадии: СКК – КОЕ-Л (лимфоидная родоначальная клетка) – унипотентные предшественники лимфоцитов (пре-Т-клетки, пре-В-клетки) – лимфобласт – пролимфоцит – лимфоцит. Особенность: способность дифференцированных клеток (лимфоцитов) дедифференцироваться в бластные формы.

      Красный костный мозг. Локализация, характеристика гемопоэтических островков и микроокружения, регенерация. Желтый костный мозг.

    Красный костный мозг (ККМ) – центральный орган кроветворения. Первые недели выполняет остеогенную функцию, далее – кроветворную. Стромой ККМ является ретикулярная и жировая ткани, последняя увеличиваясь приводит к затуханию кроветворения. Сосуды ККМ: артерии с выраженной мышечной стенкой, крупные венозные синусы (депо крови), синусоидные капилляры. Ближе к кровеносным сосудам располагаются очаги формирования эритроцитов, они в процессе скапливаются вокруг макрофагов, которые содержат железо. Эритроциты меняют окраску: полихроматофильные – оксифильные - теряют ядра.

    Рядом с синусоидными капиллярами располагаются самые крупные клетки – мегакариобласты (ядро округлое, дольчатое) и мегакариоциты (ядра лопастные). Их отростки проникают ч/з стенку синусоидных капилляров, отрываясь эти части образуют тромбоциты, содержащие отрывки цитоплазмы и частично органеллы.

    По периферии, ближе к эндосту, располагаются зернистые лйкоциты. Здесь же идет процесс постоянной дифференцировки. Только зрелые лимфоциты проникают в кровяное русло.

    Предшественники лимфоцитов мигрируют сразу в тимус – Т-лимфоциты; другая часть мигрирует в В-зависимые зоны лимфатических органов. Дальше происходит дифференцировка и пролиферация.

    Регенерация осуществляется путем деления. имеет иннервация.

      Тимус. Развитие, строение, функции. Возрастная и акцидентальная инволюция тимуса.

    Тимус (вилочковая железа) – центральный орган кроветворения и иммунитета, антиген независимый. Образуется из эпителия глоточной кишки (3-4пара жаберных карманов). Эпителий постепенно разделяется на дольки, м/у которыми из мезенхимы образуются соединительнотканные перегородки. Стромой дольки является эпителий, который потеряв строение пласта, постепенно разрыхляется и принимает ретикулоподоный вид, поэтому называется ретикулоэпителиоцитами. Микроокружение включает в себя: макрофаги, кровеносные сосуды с эндотелиальныеми и адвентициальнями клетками (фибробласты, липоциты).

    На уровне ПСК (2 класс) происходит заселение тимуса. Эдесь происходи дифференцировка и образование Т-лимфоцитов, которые мигрируют в Т-зависимые периферийные зоны лимфатических узлов (ЛУ). Здесь происходит пролиферация Т-лимфоцитов и образование специализированных Т-лимфоцитов (Т-хелперы, киллеры, памяти). При чем эти процессы протекают в периферийных органах только при раздражении.

    Лимфоциты, имеющие на своей поверхности антигены, в норме за пределы тимуса не выходят. В противном случае они могут быть причиной аутоиммунной агрессии.

    Строение тимуса: различают корковое и мозговое вещество. Корковое вещество наиболее темное. мозговое – светлое. Лимфоциты заселяют сначала мозговое вещество. Здесь эпителиальные клетки располагаются более компактно и образуют сеть. В корковом веществе по периферии располагаются СК – лимфобласты. Эта зона субкапсулярная. Эти Т-лимфоциты устойчивы к физическим факторам, облучению, глюкокордикоидам надпочечников. Восстановление идет за счет Т-зоны – акцидентальная инвалюция тимуса. В мозговом веществе легче просматриваются эпителиоциты. С возрастом происходит увеличение эпителиальных телец – телец Гассаля (эпителиальные жемчужины). В центре этих телец происходит распад эпителиальных клеток – возрастная инвалюция тимуса. Виды телец: оксифильная, форма ближе к округлой, по периферии видны плоские базофильные ядра. Размеры разные.

    Кровоснабжение: корковое и мозговое вещество кровоснабжается отдельно. Т-лимфоциты из коркового вещества не переходят в мозговое, а мигрируют сразу в Т-периферийную органы кроветворения. Кровоснабжение мозгового вещества больше замкнуто, из него не могу выйти Т-лимфоциты. этому препятствует специальный барьер (эндотелий, базальная мембрана капилляра, эпителиальные клетки – стромы. макрофаги).

    Регенерация: максимальное развитие тимус достигает к 25 годам, после чего идет инвалюция. В старости т.ж. имеет функциональное значение. Регенерация возможна только в детском возрасте. Микроокружение тимуса вырабатывает специальные вещества – тимозины, они способствуют кроветворению, в частности вырабатывают Т-активины.

      Периферические органы кроветворения. Общая морфофункциональная характеристика. Понятие об антигензависимом кроветворении.

    К периферическим органам кроветворения относят миндалины, селезенку, лимфатические узлы и узелки. В периферических органах происходят размножение приносимыхсюда из центральных органов Т- и В-лимфоцитов и специализация их под влиянием антигенов в эффекторные клетки, осуществляющие иммунную защиту, и клетки памяти. К.т. здесь погибают клетки крови, завершающие свой жизненный цикл.

      Лимфатические узлы. Общая морфофункциональная характеристика. Строение и функции синусов лимфатического узла.

    ЛУ – располагаются в определенных местах. Размер от нескольких мм до 1,5 см. Развивабтся на 2 месяце внутриутробного развития, в них происходит универсальное кроветворение. После рождения остается только лимфоцитопоэз. Выполняют защитную (барьерную), кроветворную (только лимфоцитопоэз), иммунобиологическую (В-лимфоплазматические клетки), депонирующую (депонирует лимфу) функции.

    ЛУ имеет бобовидную форму.По большой кривизне располагается большое количество приносящих сосудов, только 1 сосуд располагается в воротах, является выносящим. Снаружи ЛУ покрыт соединительнотканной капсулой. Внутри отходят соединительнотканные перегородки – трабекулы.

    Лимфа протекает в ЛУ по сосудам снаружи выпуклой стороны и попадает в систему синусов: 1) краевой (подкапсулярный синус) – располагается м/у капсулой и ЛУ. 2) вокругузелковый (корковый) синус – м/у трабекулой и ЛУ. 3) промежуточный (мозговой) синус – м/у трабекулой и мякотными тяжами. 4) воротный синус – в области ворот.

      Лимфатические узлы. Гистофизиология коркового, мозгового вещества и паракортикальной зоны. Участие лимфатических узлов в иммунном ответе.

    ЛУ включает в себя лимфоидную ткань, подразделяется на 2 части: мозговое и корковое.

    Корковое вещество представлено лимфатическими узелками, мозговое – мякотными тяжами. Вместе они составляют В-зависимые зоны. На границе коркового и мозгового вещества выделяют паракортикальную Т-зависимую зону.

    При раздражении антигеном (антиген зависимый орган) в гомогенных ЛУз появляются светлый (реактивный) центр (В-лимфоциты), а сам ЛУз подразделяется на корковое и мозговое вещество. Созревшие В-лимфоциты выходят в кровеносное русло, дальше в ткань – превращаются в плазматические клетки, которые начинают вырабатывать антитела.

    Микроокружение: нефагоцитирующие макрофаги – они способны на поверхности накапливать антиген, при определенном количестве которого происходит пролиферация и бласттрансформация лимфоцитов. Выделяют 2 вида: 1) дендритные – находятся в реактивных центрах ЛУ и активируют В-лимфоциты; 2) интердигитирующие – находятся в паракортикальной зоне ЛУ и активируют Т-лимфоциты, является аналогом эпидермальных макрофогаов. Т.ж. в микроокружение входят ретикулярные клетки и резидентные (фагоцитирующие) макрофаги.

    Регенерация возможна только в детском возрасте.

      Селезенка. Общая морфофункциональная характеристика. Функции селезенки в эмбриональном и постнатальном периодах.

    Селезенка развивается на 2 месяце эмбриогенеза. Сначала выступает в роли универсального органа кроветворения, после рождении – только лимфоцитопоэз. Выполняет защитную (барьерную), иммунобиологическую функции, вырабатывает поэтины (тромбоцитопоэтины и эритропоэтины), участвует в разрушении эритроцитов. Селезенка является нежизненно важным органом. Снаружи покрыта брюшиной (висцеральным листком), под ней располагается соединительнотканная капсула (здесь находятся гладкие миоциты, при сокращении которых возникает боль в левом подреберье; при резком наполнении селезенки происходит ее разрыв). Регенерирует хорошо, при условии сохранения всех составных частей.

      Белая пульпа селезенки. Строение, функции. Участие в иммунных реакциях.

    Белая пульпа - имеют ЛУз различают 4 зоны: 1) периартериальная зона – тимус зависимая зона; 2) реактивный центр – (светлая зона) В-лимфоциты, антиген зависимая зона; 3) мантийная зона – В- и Т-лимфоциты, зона расположена на пути миграции; 4) краевая зона – (маргенальная) В- и Т- лимфоциты на пути миграции.

    Всегда располагается центральная аретрия на периферии.

      Красная пульпа селезенки. Строение и функции. Особенности внутриорганного кровоснабжения селезенки.

    Красная пульпа – ретикулярные клетки и резидентные макрофаги (строма), которые разрушают эритроциты: билирубин поступает обратно в печень, а железо – в ККМ.

    Закрытая система кровоснабжения: (а – кап - в) селезеночная а. – трабекулярная а. – пульпарная а. – центральная а. – кисточковая а. – капилляр – венозный синус – пульпарная вена – трабекулярная в.

    Открытая система: (а. – кр. пульпа – в.) селезеночная а. – трабекулярная а. – пульпарная а. – центральная а. – кисточковая а. – капилляр – красная пульпа - венозный синус – пульпарная вена – трабекулярная в.

      Иммунная система слизистых оболочек. Общая морфофункциональная характеристика. Гистофизиология небной миндалины.

    Миндалина выполняет защитную (барьерную), кроветворную (лимфоцитопоэз), иммунобиологическую (выработка антигена) функции. Небная миндалина имеет 10-15 крипт. Снаружи покрыта многослойным плоским неороговевающим эпителием, под ней располагается собственная пластинка слизистой оболочки (рыхлая соединительная ткань). В собственной пластинки слизистой оболочки располагаются лимфатические узелки (ЛУз). Если не было встречи с антигеном ЛУз – гомогенны, если встреча состоялась, то ЛУз – гетерогенны, т.е. имеют 2 части: корковое и мозговое. В мозговом веществе происходит пролиферация В-лимфоцитови их бласттрансформация.

    Единая иммунная система слизистых оболочек представленная скоплениями лимфоцитов в слизитых оболочках ЖКТ, бронхов, мочеполовых путей, выводных протоков молочных и слюнных желез. Лимфоциты могут формировать одиночные/групповые лимфоидные узелки. ЛУз осуществляют локальную защиту. Лимфоциты располагаются в рыхлой волокнистой соединительной ткани оболочек, покрытых эпителием.

      Клеточные основы иммунных реакций. Общая морфофункциональная характеристика иммунокомпетентных клеток и их взаимодействие в иммунном ответе.

    Иммунная сиситема объединяет органы и ткани, в которых происходит образование и взаимодействие клеток – иммуноцитов, выполняющих функцию распознования генетически чужеродных субстанций и осуществляющих специфическую реакцию.

    При первой встречи с антигеном (первичный ответ) лимфоциты стимулируются и подвергаются трансформации в бластные формы, которые способны к пролиферации и дифференцировки в иммуноциты. В результате пролиферации увеличивается чилсо лимфоцитов соответствующего клона. Дифференцировка приводит к появлению двух типов клеток – эффекторных и клеток памяти. Эффекторные клетки непосредственно участвуют в ликвидации/обезвреживании чужеродного материла. К эффекторным клеткам относятся активированные лимфоциты и плазматические клетки. Клетки памяти – это лимфоциты, возвращающиеся в неактивное состояние, но несущие информацию о встрече с конкретным антигеном. При повторном введении данного антигена они способны обеспечивать быстрый иммунный ответ большей интенсивности (вторичный ответ) вследствие усиленной пролиферации лимфоцитов и образования иммуноцитов.

    При клеточном иммунитете эффекторными клетками являются цитотоксические Т-лимфоциты/лимфоциты – киллеры, которые непосредственно участвуют в уничтожении чужеродных клеток других органов и выделяют литические вещества. Такая реакция лежит в основе отторжения чужеродный тканей в условиях трансплантации.

    Основными клетками. осуществляющими иммунные реакции являются Т- и В-лимфоциты, макрофаги и ряд взаимодействующих с ними клеток.

    Т-лимфоциты – дифференцируются в тимусе. поступают в кровь и лимфу и заселяют Т-зоны в периферических органах иммунной системы, в которых под влиянием антигенов образуются Т-иммуноциты и Т-клетки памяти. Для Т-лимфоцитов характерно наличие на плазмолемме особых рецепторов, способных специфически распознавать и связывать антигены. В популяции Т-лимфоцитов различают несколько функциональных групп клеток: Т-киллеры, Т-хелперы, Т-супрессоры.

    В-лимфоциты – основные клетки, участвующие в гуморальном иммунитете. Образуются из СКК ККМ, затем поступают в кровь и далее заселяют В-зоны периферических лимфоидных органов. При действии антигена В-лимфоциты в периферических лимфоидных органах активизируются, пролиферируют, дифференцируются в плазмоциты, активно синтезирующие антитела различных классов, которые поступают в кровь, лимфу и тканевую жидкость.

      Общий план строения и источники эмбрионального развития стенки пищеварительной трубки.

    Эпителиальная выстилка пищеварительной трубки и железы развивается из энтодермы и эктодермы. Из энтодермы формируются однослойный призматический эпителий слизистой оболочки желудка, тонкого и большей части толстого кишечника, а т.ж. железистая паренхима печени и поджелудочной железы. Из эктодермы ротовой полости и анальной бухт эмбриона обруется многослойный плоский эпителий ротовой полости, слюнных желез и каудального отдела прямой кишки. Мезенхима является источником развития соединительной ткани и сосудов, а т.ж. гладкой мускулатуры пищеварительных органов. Из висцерального листка спланхнотома развивается однослойный плоский эпителий серозной оболочки – висцерального листка брюшины.

    В стенки пищеварительной трубки выделяют 4 оболочки: слизистая, подслизистая, мышечная и наружная (сероза/адвентиция).

      Слизистая оболочка переднего, среднего и заднего отделов пищеварительной трубки. Общая характеристика и особенности строения.

    В слизистой оболочке во всех отделах пищеварительной трубки рельеф неровный: складки (встерачются везде; выпячивания слизистой оболочки при наличии подслизистой основы), ямки (в желудке; небольшие углубления в подлежащей ткани), крипты (более глубокие углубления), ворсинки (только в тонком отделе кишечника; выпячивания слизистой оболочки пальцевидной формы).

    Слизистая оболочка состоит из 3 пластинок: 1) эпителиальная – в переднем и заднем отделах – многослойный; в среднем – однослойный. 2) собственная пластинка – рыхлая неоформленная соединительная ткань, в которой располагаются кровеносные и лимфатические сосуды, нервные волокна, могут находиться лимфоидные узелки, железы. 3) мышечная пластинка – гладкая мышечная ткань, лежит на границе слизистой и подслизистой. Чаще пучки мышечной пластинки образуют 2 слоя: внутренний (циркулярный) и наружный (продольный). Она придает пластичность, сокращаясь, способствует изменению рельефа и выделению секрета из желез.

      Ротовая полость. Гистофизиология слизистой оболочки органов ротовой полости (губа, язык, десна, щека, твердое и мягкое небо).

    К ротовой полости относят структуры, образующие стенки полости и их производные. Стенки: губы, щеки, десны, твердое и мягкое небо.

    Органы: язык, слюнные железы, зубы, небные миндалины.

    Слизистая оболочка состоит из многослойного неороговевающего эпителия, но в участках повышенной механической нагрузки ороговевает (спинка языка, средняя линия щек, десны, части твердого неба). Собственная пластинка образует сосочки, которые большие, высокие, располагаются в участках с повышенной механической нагрузкой. Подслизистая основа отсутствует в местах с повышенной механической нагрузкой.

      Губа. Гистофизиология кожной, слизистой и переходной частей.

    Губа – ограничивает ротовую полость, является зоной перехода от кожного покрова в слизистую пищеварительного тракта. В губе выделяют 3 отдела: 1) кожный – имеет строение тонкой кожи, эпидермис, дерма, сальные железы, волосы; 2) промежуточный (переходный) – включает гладкую часть (красная кайма) и ворсинчатую часть (линия смыкания губ). Гладкая часть выстлана многослойным плоским ороговевающим эпителием, ч/з который просвечиваются капилляры, имеется много рецепторов. Ворсинчатая часть – многослойный плоский неороговевающий эпителий (у новорожденного эпителий образует выросты). 3) слизистый отдел – многослойный неороговевающий эпителий, под ним располагается собственная пластинка слизистой оболочки.

    В губе взрослого в кожной части хорошо выражены производные, отсутствуют ворсинки в ворсинчатой части губы, хорошо выражена мышечная ткань, которая залегает в толще губы.