Иммунные механизмы. Механизм иммунной реакции

Понятие иммунитет обозначает невосприимчивость организма ко всяким генетически чужеродным агентам, в том числе и болезнетворным микроорганизмам и их ядам (от лат. immunitas - освобождение от чего-либо).

При попадании в организм генетически чужеродных структур (антигенов) приходит в действие целый ряд механизмов и факторов, которые распознают и обезвреживают эти чуждые для организма субстанции.

Система органов и тканей, осуществляющая защитные реакции организма против нарушения постоянства его внутренней среды (гомеостаза), называется иммунной системой.

Наука об иммунитете - иммунология изучает реакции организма на чужеродные вещества, в том числе и микроорганизмы; реакции организма на чужеродные ткани (совместимость) и на злокачественные опухоли; определяет иммунологические группы крови и т. д. Основы иммунологии были заложены стихийными наблюдениями древних о возможности искусственного предохранения человека от заразной болезни. Наблюдения за людьми, находившимися в очаге эпидемии, привели к заключению, что заболевают не все. Так, не болеют чумой выздоровевшие от этой болезни; корью обычно болеют один раз в детстве; перенесшие коровью оспу, не болеют натуральной и т. п.

Известны способы древних народов предохранять от укуса змеи, втирая в насечки на коже растения, растертые со змеиным ядом; защищать стада от перипневмонии скота, делая также насечки на коже кинжалом, предварительно погруженном в легкие быка, погибшего от этого заболевания.

Впервые искусственную прививку с целью предупреждения инфекции произвел Э. Дженнер (1876). Однако только Л. Пастер сумел научно обосновать принципы искусственной защиты от инфекционных болезней. Он доказал, что заражение ослабленными возбудителями ведет к невосприимчивости организма при повторных встречах с этими микроорганизмами.

Пастер разработал препараты, предохраняющие от заболевания сибирской язвой и бешенством.

Дальнейшее развитие иммунология получила в работах И. И. Мечникова о значении клеточного иммунитета (фагоцитоза) и П. Эрлиха о роли гуморальных факторов (жидкостей организма) для развития невосприимчивости.

В настоящее время иммунология - это наука, в которой защита от инфекционных болезней является лишь одним из звеньев. Она объясняет причины совместимости и отторжения тканей при пересадке органов, гибель плода при резус-конфликтной ситуации, осложнения при переливании крови, решает задачи судебной медицины и т. п.

Основные виды иммунитета представлены на схеме.

Наследственный (видовой) иммунитет

Наследственный (видовой) иммунитет - это наиболее прочная и совершенная форма невосприимчивости, которая обусловлена передающимися по наследству факторами резистентности (устойчивости).

Известно, что человек невосприимчив к чуме собак и рогатого скота, а животные не болеют холерой и дифтерией. Однако наследственный иммунитет не абсолютен: создавая особые, неблагоприятные условия для макроорганизма, можно изменить его невосприимчивость. Например, перегрев, охлаждение, авитаминоз, действие гормонов приводят к развитию заболевания, которое обычно человеку или животному несвойственно. Так, Пастер, охлаждая кур, вызывал у них при искусственном заражении заболевание сибирской язвой, которой они в обычных условиях не болеют.

Приобретенный иммунитет

Приобретенный иммунитет у человека формируется в течение жизни, по наследству он не передается.

Естественный иммунитет . Активный иммунитет формируется после перенесенного заболевания (его называют постинфекционным). В большинстве случаев он длительно сохраняется: после кори, ветряной оспы, чумы и др. Однако после некоторых заболеваний длительность иммунитета невелика и не превышает одного года (грипп, дизентерия и др.). Иногда естественный активный иммунитет развивается без видимого заболевания. Он формируется в результате скрытой (латентной) инфекции или многократного инфицирования небольшими дозами возбудителя, не вызывающими явно выраженного заболевания (дробная, бытовая иммунизация).

Пассивный иммунитет - это иммунитет новорожденных (плацентарный), приобретенный ими через плаценту в период внутриутробного развития. Новорожденные могут также получить иммунитет с молоком матери. Этот вид иммунитета непродолжителен и к 6-8 мес, как правило, исчезает. Однако значение естественного пассивного иммунитета велико - он обеспечивает невосприимчивость грудных детей к инфекционным заболеваниям.

Искусственный иммунитет . Активный иммунитет человек приобретает в результате иммунизации (прививок). Этот вид иммунитета развивается после введения в организм бактерий, их ядов, вирусов, ослабленных или убитых разными способами (прививки против коклюша, дифтерии, оспы).

При этом в организме происходит активная перестройка, направленная на образование веществ, губительно действующих на возбудителя и его токсины (антитела). Происходит также изменение свойств клеток, уничтожающих микроорганизмы и продукты их жизнедеятельности. Развитие активного иммунитета происходит постепенно в течение 3-4 нед и сохраняется он сравнительно длительное время - от 1 года до 3-5 лет.

Пассивный иммунитет создают введением в организм готовых антител. Этот вид иммунитета возникает сразу после введения антител (сывороток и иммуноглобулинов), но сохраняется всего 15-20 дней, после чего антитела разрушаются и выводятся из организма.

Понятие "местный иммунитет" было введено А. М. Безредкой. Он считал, что отдельные клетки и ткани организма обладают определенной восприимчивостью. Иммунизируя их, создают как бы барьер для проникновения возбудителей инфекции. В настоящее время доказано единство местного и общего иммунитета. Но значение невосприимчивости отдельных тканей и органов к микроорганизмам несомненно.

Помимо указанного выше разделения иммунитета по происхождению, различают формы иммунитета, направленные на разные антигены.

Антимикробный иммунитет развивается при заболеваниях, обусловленных различными микроорганизмами или при введении корпускулярных вакцин (из живых ослабленных или убитых микроорганизмов).

Антитоксический иммунитет вырабатывается по отношению к бактериальным ядам - токсинам.

Антивирусный иммунитет формируется после вирусных заболеваний. Этот вид иммунитета большей частью длительный и стойкий (корь, ветряная оспа и др.). Антивирусный иммунитет развивается также при иммунизации вирусными вакцинами.

Кроме того, иммунитет можно разделить в зависимости от периода освобождения организма от возбудителя.

Стерильный иммунитет . Большинство возбудителей исчезает из организма при выздоровлении человека. Этот вид иммунитета называют стерильным (корь, оспа и др.).

Нестерильный иммунитет . Восприимчивость к возбудителю инфекции сохраняется только в период пребывания его в организме хозяина. Такой иммунитет называют нестерильным или инфекционным. Этот вид иммунитета наблюдают при туберкулезе, сифилисе и некоторых других инфекциях.

Контрольные вопросы

1. Что такое иммунитет?

2. Какие Вы знаете формы иммунитета?

Невосприимчивость человека к инфекционным заболеваниям обусловлена совместным действием неспецифических и специфических факторов защиты.

Неспецифическими называют врожденные свойства организма, которые способствуют уничтожению самых различных микроорганизмов на поверхности тела человека и в полостях его организма.

Развитие специфических факторов защиты происходит после соприкосновения организма с возбудителями или токсинами; действие этих факторов направлено только против этих возбудителей или их токсинов.

Неспецифические факторы защиты организма

Существуют механические, химические и биологические факторы, предохраняющие организм от вредных воздействий различных микроорганизмов.

Кожа . Неповрежденная кожа является барьером для проникновения микроорганизмов. При этом имеют значение механические факторы: отторжение эпителия и выделения сальных и потовых желез, которые способствуют удалению микроорганизмов с кожи.

Роль химических факторов защиты также выполняют выделения желез кожи (сальных и потовых). Они содержат жирные и молочные кислоты, обладающие бактерицидным (убивающим бактерии) действием.

Биологические факторы защиты обусловлены губительным воздействием нормальной микрофлоры кожи на патогенные микроорганизмы.

Слизистые оболочки разных органов являются одним из барьеров на пути проникновения микроорганизмов. В дыхательных путях механическая защита осуществляется с помощью мерцательного эпителия. Движение ресничек эпителия верхних дыхательных путей постоянно передвигает пленку слизи вместе с различными микроорганизмами по направлению к естественным отверстиям: ротовой полости и носовым ходам. Такое же воздействие на бактерий оказывают волоски носовых ходов. Кашель и чиханье способствуют удалению микроорганизмов, предотвращают их аспирацию (вдыхание).

В слезах, слюне, материнском молоке и других жидкостях организма содержится лизоцим. Он оказывает губительное (химическое) действие на микроорганизмы. Также влияет на микроорганизмы кислая среда желудочного содержимого.

Нормальная микрофлора слизистых оболочек, как фактор биологической защиты, является антагонистом патогенных микроорганизмов.

Контрольные вопросы

1. Что такое неспецифические факторы защиты?

2. Какие факторы препятствуют проникновению патогенных микроорганизмов через кожу и слизистые оболочки?

Воспаление - реакция макроорганизма на чужеродные частицы, проникающие в его внутреннюю среду. Одной из причин воспаления является внедрение в организм возбудителей инфекции. Развитие воспаления приводит к уничтожению микроорганизмов или освобождению от них.

Воспаление характеризуется нарушением циркуляции крови и лимфы в очаге поражения. Оно сопровождается повышением температуры, отеком, краснотой и болевыми ощущениями.

Клеточные факторы неспецифической защиты

Фагоцитоз

Одним из основных механизмов воспаления является фагоцитоз - процесс поглощения бактерий.

Явление фагоцитоза впервые описано И. И. Мечниковым. Он начал изучение фагоцитоза от одноклеточной амебы, для которой фагоцитоз является способом усвоения пищи. Проследив этот процесс на разных ступенях развития животного мира, И. И. Мечников завершил его открытием специализированных клеток человека, с помощью которых происходит уничтожение бактерий, рассасывание мертвых клеток, очагов кровоизлияний и т. д. Так было создано учение о фагоцитозе, которое и сегодня имеет огромное значение.

Фагоцитарной активностью обладают различные клетки организма (лейкоциты крови, эндотелиальные клетки кровеносных сосудов). Наиболее выражена эта активность у подвижных полиморфноядерных лейкоцитов, моноцитов крови и тканевых макрофагов, в меньшей степени - у клеток костного мозга. Все одноядерные фагоцитирующие клетки (и их костномозговые предшественники) объединены в систему мононуклеарных фагоцитов (СМФ).

Фагоцитирующие клетки имеют лизосомы, в которых находится более 25 различных гидролитических ферментов и белков, обладающих антибактериальными свойствами.

Стадии фагоцитоза . Этап 1 - приближение фагоцита к объекту за счет химического влияния последнего. Это движение называют положительным хемотаксисом (в сторону объекта).

Этап 2 - прилипание микроорганизмов к фагоцитам.

Этап 3 - поглощение микроорганизмов клеткой, образование фагосомы.

Этап 4 - образование фаголизосомы, куда поступают ферменты и бактерицидные белки, гибель и переваривание возбудителя.

Процесс, который заканчивается гибелью фагоцитированных микробов, называется завершенным фагоцитозом.

Однако некоторые микроорганизмы, находясь внутри фагоцитов, не погибают, а иногда даже размножаются в них. Это - гонококки, микобактерии туберкулеза, бруцеллы. Такое явление называют незавершенным фагоцитозом; при этом погибают фагоциты.

Как и другие физиологические функции, фагоцитоз зависит от состояния организма - регулирующей роли центральной нервной системы, питания, возраста.

Фагоцитарная деятельность лейкоцитов изменяется при многих и часто неинфекционных заболеваниях. Определяя ряд показателей фагоцитоза, можно установить течение болезни - выздоровление или ухудшение состояния больного, эффективность проводимого лечения и пр.

Для оценки функционального состояния фагоцитов чаще всего определяют поглотительную активность по двум тестам: 1) фагоцитарный показатель - процент фагоцитирующих клеток (число лейкоцитов с поглощенными микробами из 100 наблюдаемых); 2) фагоцитарное число - среднее количество поглощенных одним лейкоцитом микробов или других объектов фагоцитоза.

Бактерицидные возможности фагоцитов определяют по числу лизосом, активности внутриклеточных ферментов и другими методами.

Активность фагоцитоза связана с наличием в сыворотке крови антител - опсонинов. Эти антитела усиливают фагоцитоз, готовят поверхность клетки к поглощению ее фагоцитом.

Активность фагоцитоза в значительной степени определяет невосприимчивость организма к тому или иному возбудителю. При одних заболеваниях фагоцитоз является основным фактором защиты, при других - вспомогательным. Однако во всех случаях отсутствие фагоцитарной способности клеток резко ухудшает течение и прогноз заболевания.

Клеточная реактивность

Развитие инфекционного процесса и формирование иммунитета полностью зависят от первичной чувствительности клеток к возбудителю. Наследственный видовой иммунитет - пример отсутствия чувствительности клеток одного вида животных к микроорганизмам, патогенным для других. Механизм этого явления изучен недостаточно. Известно, что реактивность клеток меняется с возрастом и под влиянием различных факторов (физических, химических, биологических).

Контрольные вопросы

1. Что такое фагоцитоз?

2. Какие стадии фагоцитоза Вы знаете?

3. Что такое завершенный и незавершенный фагоцитоз?

Гуморальные факторы неспецифической защиты

Помимо фагоцитов, в крови находятся растворимые неспецифические вещества, губительно действующие на микроорганизмы. К ним относятся комплемент, пропердин, β-лизины, х-лизины, эритрин, лейкины, плакины, лизоцим и др.

Комплемент (от лат. complementum - дополнение) представляет собой сложную систему белковых фракций крови, обладающую способностью лизировать микроорганизмы и другие чужеродные клетки, например эритроциты. Различают несколько компонентов комплемента: С 1 , С 2 , С 3 и т. д. Комплемент разрушается при температуре 55° С в течение 30 мин. Это свойство называется термолабильностью. Он разрушается также при встряхивании, под влиянием УФ-лучей и т. п. Помимо сыворотки крови, комплемент обнаружен в различных жидкостях организма и в воспалительном экссудате, но отсутствует в передней камере глаза и спинномозговой жидкости.

Пропердин (от лат. properde - подготовлять) - группа компонентов нормальной сыворотки крови, активирующая комплемент в присутствии ионов магния. Он сходен с ферментами и играет важную роль в устойчивости организма к инфекции. Снижение уровня пропердина в сыворотке крови свидетельствует о недостаточной активности иммунных процессов.

β-лизины - термостабильные (устойчивые к действию температуры) вещества сыворотки крови человека, обладающие антимикробным действием, в основном по отношению к грамположительным бактериям. Разрушаются при 63° С и под действием УФ-лучей.

Х-лизин - термостабильное вещество, выделенное из крови больных с высокой температурой. Обладает способностью без участия комплемента лизировать бактерии, главным образом грамотрицательные. Выдерживает нагревание до 70-100° С.

Эритрин выделен из эритроцитов животных. Оказывает бактериостатическое действие на возбудителей дифтерии и некоторые другие микроорганизмы.

Лейкины - бактерицидные вещества, выделенные из лейкоцитов. Термостабильны, разрушаются при 75-80° С. Обнаруживаются в крови в очень небольших количествах.

Плакины - сходные с лейкинами вещества, выделенные из тромбоцитов.

Лизоцим - фермент, разрушающий оболочку микробных клеток. Он содержится в слезах, слюне, жидкостях крови. Быстрое заживление ран конъюнктивы глаза, слизистых оболочек полости рта, носа объясняется в значительной степени наличием лизоцима.

Бактерицидными свойствами обладают также составные компоненты мочи, простатическая жидкость, экстракты различных тканей. В нормальной сыворотке содержится в небольшом количестве интерферон.

Контрольные вопросы

1. Что такое гуморальные факторы неспецифической защиты?

2. Какие гуморальные факторы неспецифической защиты Вы знаете?

Специфические факторы защиты организма (иммунитет)

Перечисленные выше компоненты не исчерпывают всего арсенала факторов гуморальной защиты. Главными среди них являются специфические антитела - иммуноглобулины, образующиеся при введении в организм чужеродных агентов - антигенов.

Антигены

Антигены - генетически чужеродные для организма вещества (белки, нуклеопротеиды, полисахариды и др.), на введение которых организм отвечает развитием специфических иммунологических реакций. Одна из таких реакций - образование антител.

Антигены обладают двумя основными свойствами: 1) иммуногенностью, т. е. способностью вызывать образование антител и иммунных лимфоцитов; 2) способностью вступать с антителами и иммунными (сенсибилизированными) лифоцитами в специфическое взаимодействие, которое проявляется в виде иммунологических реакций (нейтрализации, агглютинации, лизиса и др.). Антигены, обладающие обоими признаками, называются полноценными. К ним относятся чужеродные белки, сыворотки, клеточные элементы, токсины, бактерии, вирусы.

Вещества, не вызывающие иммунологических реакций, в частности выработку антител, но вступающие в специфическое взаимодействие с готовыми антителами, получили название гаптенов - неполноценных антигенов. Гаптены приобретают свойства полноценных антигенов после соединения с крупномолекулярными веществами - белками, полисахаридами.

Условиями, определяющими антигенные свойства различных веществ, являются: чужеродность, макромолекулярность, коллоидное состояние, растворимость. Проявляется антигенность при попадании вещества во внутреннюю среду организма, где происходит встреча его с клетками иммунной системы.

Специфичность антигенов, способность их соединяться только с соответствующим антителом - уникальное биологическое явление. Оно лежит в основе механизма сохранения постоянства внутренней среды организма. Это постоянство обеспечивает иммунная система, распознающая и уничтожающая генетически чужеродные вещества (в том числе и микроорганизмы, их яды), находящиеся в его внутренней среде. Иммунная система человека несет постоянный иммунологический надзор. Она способна распознавать чужеродность при отличии клетки всего по одному гену (раковые).

Специфичность - особенность строения веществ, по которой антигены отличаются друг от друга. Она определяется антигенной детерминантой, т. е. небольшим участком молекулы антигена, который и соединяется с антителом. Число таких участков (группировок) у разных антигенов различно и определяет число молекул антител, с которыми может соединяться антиген (валентность).

Способность антигенов соединяться только с теми антителами, которые возникли в ответ на активацию иммунной системы данным антигеном (специфичность), используется в практике: 1) диагностика инфекционных болезней (определение специфических антигенов возбудителя или специфических антител в сыворотке крови больного); 2) профилактика и лечение больных инфекционными болезнями (создание невосприимчивости к определенным микробам или токсинам, специфическая нейтрализация ядов возбудителей ряда болезней при иммунотерапии).

Иммунная система четко дифференцирует "свои" и "чужие" антигены, реагируя только на последние. Однако возможны реакции на собственные антигены организма - аутоантигены и возникновение против них антител - аутоантител. Аутоантигенами становятся "забарьерные" антигены - клетки, вещества, которые в течение жизни идивидуума не контактируют с иммунной системой (хрусталик глаза, сперматозоиды, щитовидная железа и др.), а приходят в соприкосновение с ней при различных повреждениях, всасываясь обычно в кровь. А поскольку при развитии организма эти антигены не распознавались как "свои", то не сформировалась естественная толерантность (специфическая иммунологическая безответность), т. е. в организме остались клетки иммунной системы, способные к иммунному ответу на эти собственные антигены.

В результате появления аутоантител могут развиться аутоиммунные заболевания как следствие: 1) прямого цитотоксического действия аутоантител на клетки соответствующих органов (например, зоб Хасимото - повреждение щитовидной железы); 2) опосредованного действия комплексов аутоантиген - аутоантитело, которые откладываются в поражаемом органе и вызывают его повреждение (например, системная красная волчанка, ревматоидный артрит).

Антигены микроорганизмов . Микробная клетка содержит большое число антигенов, имеющих разное расположение в клетке и разное значение для развития инфекционного процесса. У разных групп микроорганизмов антигены имеют различный состав. У кишечных бактерий хорошо изучены О-, К-, Н-антигены.

О-антиген связан с клеточной стенкой микробной клетки. Его обычно называли "соматическим", так как считали, что этот антиген заключен в теле (соме) клетки. О-антиген грамотрицательных бактерий - сложный липополисахаридно-протеиновый комплекс (эндотоксин). Он термостабилен, не разрушается при обработке спиртом и формалином. Состоит из основного ядра (core) и боковых полисахаридных цепей. Специфичность О-антигенов зависит от строения и состава этих цепей.

К-антигены (капсульные) связаны с капсулой и клеточной стенкой микробной клетки. Их называют также оболочечными. К-антигены расположены более поверхностно, чем О-антигены. Они являются главным образом кислыми полисахаридами. Имеется несколько видов К-антигенов: А, В, L и др. Эти антигены отличаются друг от друга по устойчивости к температурным воздействиям. А-антиген наиболее устойчив, L - наименее. К поверхностным антигенам относят и Vi-антиген, который имеется у возбудителей брюшного тифа и некоторых других кишечных бактерий. Он разрушается при 60° С. Наличие Vi-антигена связывали с вирулентностью микроорганизмов.

Н-антигены (жгутиковые) локализуются в жгутиках бактерий. Они представляют собой особый белок - флагеллин. Разрушаются при нагревании. При обработке формалином сохраняют свои свойства (см. рис. 70).

Протективный антиген (защитный) (от лат. protectio - покровительство, защита) образуется возбудителями в организме больного. Возбудители сибирской язвы, чумы, бруцеллеза способны образовывать протективный антиген. Его обнаруживают в экссудатах пораженных тканей.

Выявление антигенов в патологическом материале является одним из способов лабораторной диагностики инфекционных болезней. Для выявления антигена применяют различные иммунные реакции (см. ниже).

При развитии, росте и размножении микроорганизмов их антигены могут меняться. Происходит утрата некоторых антигенных компонентов, более поверхностно расположенных. Это явление носит название диссоциации. Примером ее может служить "S" - "R"-диссоциация.

Контрольные вопросы

1. Что такое антигены?

2. Каковы основные свойства антигенов?

3. Какие антигены микробной клетки Вы знаете?

Антитела

Антитела - это специфические белки крови - иммуноглобулины, образующиеся в ответ на введение антигена и способные специфически реагировать с ним.

В сыворотке человека имеется два вида белков: альбумины и глобулины. Антитела связаны в основном с глобулинами, измененными под воздействием антигена и названными иммуноглобулинами (Ig). Глобулины неоднородны. По скорости движения в геле при пропускании через него электрического тока их делят на три фракции: α, β, γ. Антитела принадлежат главным образом к γ-глобулинам. Эта фракция глобулинов имеет наибольшую скорость движения в электрическом поле.

Иммуноглобулины характеризуют по молекулярной массе, скорости осаждения при ультрацентрифугировании (центрифугировании с очень большой скоростью) и т. п. Различия этих свойств позволили разделить иммуноглобулины на 5 классов: IgG, IgM, IgA, IgE, IgD. Все они играют роль в развитии иммунитета против инфекционных заболеваний.

Иммуноглобулины G (IgG) составляют около 75% всех иммуноглобулинов человека. Они наиболее активны в развитии иммунитета. Единственные из иммуноглобулинов проникают через плаценту, обеспечивая пассивный иммунитет плода. Имеют небольшую молекулярную массу и скорость осаждения при ультрацентрифугировании.

Иммуноглобулины М (IgM) образуются в организме плода и первыми появляются после заражения или иммунизации. К этому классу принадлежат "нормальные" антитела человека, которые образуются в течение его жизни, без видимого проявления инфекции или при бытовом многократном инфицировании. Имеют большую молекулярную массу и скорость осаждения при ультрацентрифугировании.

Иммуноглобулины A (IgA) обладают способностью проникать в секреты слизистых (молозиво, слюна, содержимое бронхов и др.). Они играют роль в защите слизистых оболочек дыхательного и пищеварительного трактов от микроорганизмов. По величине молекулярной массы и скорости осаждения при ультрацентрифугировании близки к IgG.

Иммуноглобулины Е (IgE) или реагины несут ответственность за аллергические реакции (см. главу 13). Играют роль в развитии местного иммунитета.

Иммуноглобулины D (IgD). Обнаружены в небольшом количестве в сыворотке крови. Изучены недостаточно.

Структура иммуноглобулинов . Молекулы иммуноглобулинов всех классов построены одинаково. Наиболее простая структура у молекул IgG: две пары полипептидных цепей, соединенных дисульфидной связью (рис. 31). Каждая пара состоит из легкой и тяжелой цепи, различающихся по молекулярной массе. Каждая цепь имеет постоянные участки, которые предопределены генетически, и переменные, образующиеся под воздействием антигена. Это специфические участки антитела называют активными центрами. Они вступают во взаимодействие с антигеном, который вызвал образование антител. Количество активных центров в молекуле антитела определяет валентность - число молекул антигена, с которым может связаться антитело. IgG и IgA - двухвалентны, IgM - пятивалентны.

Иммуногенез - антителообразование зависит от дозы, кратности и способа введения антигена. Различают две фазы первичного иммунного ответа на антиген: индуктивную - от момента введения антигена до появления антителообразующих клеток (до 20 ч) и продуктивную, которая начинается к концу первых суток после введения антигена и характеризуется появлением антител в сыворотке крови. Количество антител постепенно увеличивается (к 4-му дню), достигая максимума на 7-10-й день и уменьшается к концу первого месяца.

Вторичный иммунный ответ развивается при повторном введении антигена. При этом индуктивная фаза значительно короче - антитела вырабатываются быстрее и интенсивнее.

Контрольные вопросы

1. Что такое антитела?

2. Какие Вы знаете классы иммуноглобулинов?

Клеточные механизмы иммунного ответа

Лимфоидные клетки организма выполняют основную функцию в развитии иммунитета - невосприимчивости, не только по отношению к микроорганизмам, но и ко всем генетически чужеродным клеткам, например при пересадке тканей. Лимфоидные клетки обладают способностью отличать "свое" от "чужого" и устранять "чужое" (элиминировать).

Родоначальницей всех клеток иммунной системы является кроветворная стволовая клетка. В дальнейшем происходит развитие двух типов лимфоцитов: Т и В (тимусзависимых и бурсазависимых). Эти названия клетки получили в связи с их происхождением. Т-клетки развиваются в тимусе (зобной, или вилочковой железе) и под влиянием веществ, выделяемых тимусом, в периферической лимфоидной ткани.

Название В-лимфоциты (бурсазависимые) произошло от слова "бурса" - сумка. В сумке Фабрициуса у птиц развиваются клетки, сходные с В-лимфоцитами человека. Хотя у человека не найдено органа, аналогичного сумке Фабрициуса, название связано с этой сумкой.

При развитии В-лимфоцитов из стволовой клетки они проходят несколько стадий и преобразуются в лимфоциты, способные образовывать плазматические клетки. Плазматические клетки в свою очередь образуют антитела и на их поверхности имеются иммуноглобулины трех классов: IgG, IgM и IgA (рис. 32).

Иммунный ответе виде продукции специфических антител происходит следующим образом: чужеродный антиген, проникнув в организм, прежде всего фагоцитируется макрофагами. Макрофаги, перерабатывая и концентрируя антиген на своей поверхности, передают информацию о нем Т-клеткам, которые начинают делиться, "созревают" и выделяют гуморальный фактор, включающий в антителопродукцию В-лимфоциты. Последние также "созревают", развиваются в плазматические клетки, которые и синтезируют антитела заданной специфичности.

Так, соединенными усилиями макрофаги, Т- и В-лимфоциты осуществляют иммунные функции организма - защиту от всего генетически чужеродного, в том числе и от возбудителей инфекционных болезней. Защита с помощью антител осуществляется таким образом, что синтезированные к данному антигену иммуноглобулины, соединяясь с ним (антигеном), подготавливают его, делают чувствительным к разрушению, обезвреживанию различными естественными механизмами: фагоцитами, комплементом и пр.

Контрольные вопросы

1. Какова роль макрофагов в иммунном ответе?

2. Какова роль Т-лимфоцитов в иммунном ответе?

3. Какова роль В-лимфоцитов в иммунном ответе?

Теории иммунитета . Значение антител в развитии иммунитета неоспоримо. Каков же механизм их образования? Этот вопрос в течение длительного времени является предметом споров и обсуждений.

Создано несколько теорий антителообразования, которые можно разделить на две группы: селективные (селекция - отбор) и инструктивные (инструктировать - наставлять, направлять).

Селективные теории предполагают существование в организме уже готовых антител к каждому антигену или клеток, способных синтезировать эти антитела.

Так, Эрлих (1898) предполагал, что клетка имеет готовые "рецепторы" (антитела), которые соединяются с антигеном. После соединения с антигеном, антитела образуются еще в большем количестве.

Такого же мнения придерживались создатели других селективных теорий: Н. Ерне (1955) и Ф. Бернет (1957). Они утверждали, что уже в организме плода, а затем и во взрослом организме имеются клетки, способные к взаимодействию с любым антигеном, но под влиянием определенных антигенов определенные клетки вырабатывают "нужные" антитела.

Инструктивные теории [Гауровитц Ф., Полинг Л., Ландштейнер К., 1937-1940] рассматривают антиген, как "матрицу", штамп, на котором формируются специфические группировки молекулы антител.

Однако эти теории не объясняли всех явлений иммунитета и в настоящее время наиболее принятой является клонально-селекционная теория Ф. Бернета (1964). Согласно этой теории в эмбриональном периоде в организме плода имеется множество лимфоцитов - клеток-предшественников, которые при встрече с собственными антигенами разрушаются. Поэтому во взрослом организме уже нет клеток для выработки антител к собственным антигенам. Однако, когда взрослый организм встречается с чужеродным антигеном, происходит селекция (отбор) клона иммунологически активных клеток и они вырабатывают специфические антитела, направленные против данного "чужого" антигена. При повторной встрече с этим антигеном клеток "отобранного" клона уже больше и они быстрее образуют большее количество антител. Эта теория наиболее полно объясняет основные явления иммунитета.

Механизм взаимодействия антигена и антител имеет различные объяснения. Так, Эрлих уподоблял их соединение реакции между сильной кислотой и сильным основанием с образованием нового вещества типа соли.

Бордэ считал, что антиген и антитела взаимно адсорбируют друг друга подобно краске и фильтровальной бумаге или йоду и крахмалу. Однако эти теории не объясняли главного - специфичности иммунных реакций.

Наиболее полно механизм соединения антигена и антитела объяснен гипотезой Маррека (теория "решетки") и Полинга (теория "фермы") (рис. 33). Маррек рассматривает соединение антигена и антител в виде решетки, в которой антиген чередуется с антителом, образуя решетчатые конгломераты. Согласно гипотизе Полинга (см. рис. 33) антитела имеют две валентности (две специфические детерминанты), а антиген несколько валентностей - он поливалентен. При соединении антигена и антител образуются агломераты, напоминающие "фермы" построек.

При оптимальном соотношении антигена и антител образуются большие прочные комплексы, видимые простым глазом. При избытке антигена каждый активный центр антител заполнен молекулой антигена, не хватает антител для соединения с другими молекулами антигена и образуются мелкие, невидимые глазом комплексы. При избытке антител, для образования решетки не хватает антигена, детерминанты антител отсутствуют и видимого проявления реакции нет.

На основании изложенных теорий специфичность реакции антиген - антитело сегодня представляют как взаимодействие детерминантной группы антигена и активных центров антитела. Так как антитела формируются под воздействием антигена, их структура соответствует детерминантным группам антигена. Детерминантная группа антигена и фрагменты активных центров антитела имеют противоположные электрические заряды и, соединяясь, образуют комплекс, прочность которого зависит от соотношения компонентов и среды, в которой они взаимодействуют.

Учение об иммунитете - иммунология - достигло за последние десятилетия больших успехов. Раскрытие закономерностей иммунного процесса позволило решить различные задачи во многих областях медицины. Разработаны и совершенствуются методы предупреждения многих инфекционных заболеваний; лечения инфекционных и ряда других (аутоиммунных, иммунодефицитных) болезней; предупреждения гибели плода при резус-конфликтных ситуациях; трансплантации тканей и органов; борьбы со злокачественными новообразованиями; иммунодиагностики - использования реакций иммунитета в диагностических целях.

Реакции иммунитета - это реакции между антигеном и антителом или между антигеном и сенсибилизированными * лимфоцитами, которые происходят в живом организме и могут быть воспроизведены в лабораторных условиях.

* (Сенсибилизированные - повышенно чувствительные. )

Реакции иммунитета вошли в практику диагностики инфекционных болезней в конце XIX - начале XX века. В силу высокой чувствительности (улавливают антигены в очень больших разведениях) и, главное, строгой специфичности (позволяют отличить близкие по составу антигены) они нашли широкое применение в решении теоретических и практических вопросов медицины и биологии. Этими реакциями пользуются иммунологи, микробиологи, инфекционисты, биохимики, генетики, молекулярные биологи, экспериментальные онкологи и врачи других специальностей.

Реакции антигена с антителом называются серологическими (от лат. serum - сыворотка) или гуморальными (от лат. humor - жидкость), потому что участвующие в них антитела (иммуноглобулины) всегда находятся в сыворотке крови.

Реакции антигена с сенсибилизированными лимфоцитами называются клеточными.

Контрольные вопросы

1. Как образуются антитела?

2. Какие Вы знаете теории образования антител?

3. Каков механизм взаимодействия антигена с антителом?

Серологические реакции

Серологические реакции - реакции взаимодействия между антигеном и антителом протекают в две фазы: 1-я фаза - специфическая - образование комплекса антигена и соответствующего ему антитела (см. рис. 33). Видимого изменения в этой фазе не происходит, но образовавшийся комплекс становится чувствительным к неспецифическим факторам, находящимся в среде (электролиты, комплемент, фагоцит); 2-я фаза - неспецифическая. В этой фазе специфический комплекс антиген - антитело взаимодействует с неспецифическими факторами среды, в которой происходит реакция. Результат их взаимодействия может быть видим невооруженным глазом (склеивание, растворение и т. п.). Иногда эти видимые изменения отсутствуют.

Характер видимой фазы серологических реакций зависит от состояния антигена и условий среды, в которой происходит его взаимодействие с антителом. Различают реакции агглютинации, преципитации, иммунного лизиса, связывания комплемента и др. (табл. 14).

Применение серологических реакций . Одно из основных применений серологических реакций - лабораторная диагностика инфекций. Их используют: 1) для выявления антител в сыворотке больного, т. е. для серодиагностики; 2) для определения вида или типа антигена, например выделенного от больного микроорганизма, т. е. для его идентификации.

При этом неизвестный компонент определяют по известному. Например, для обнаружения антител в сыворотке больного берут известную лабораторную культуру микроорганизма (антиген). Если сыворотка реагирует с ним, значит она содержит соответствующие антитела и можно думать, что данный микроб является возбудителем болезни у обследуемого больного.

Если нужно определить, какой микроорганизм выделен, его испытывают в реакции с известной диагностической (иммунной) сывороткой. Положительный результат реакции говорит о том, что данный микроорганизм идентичен тому, которым иммунизировали животное для получения сыворотки (табл. 15).

Серологические реакции применяют также для определения активности (титра) сывороток и в научных исследованиях.

Проведение серологических реакций требует особой подготовки.

Посуда для серологических реакций должна быть чистой и сухой. Применяют пробирки (бактериологические, агглютинационные, преципитационные и центрифужные), пипетки градуированные разного размера и пастеровские * , колбы, цилиндры, предметные и покровные стекла, чашки Петри, пластины из пластмассы с лунками.

* (Каждый ингредиент реакции разливают отдельной пипеткой. Пипетки следует сохранять до конца постановки опыта. Для этого удобно помещать их в стерильные пробирки с пометками, где какая пипетка. )

Инструменты и оборудование: петля, штативы, лупа, агглютиноскоп, термостат, холодильник, центрифуга, весы химические с разновесом.

Материалы: антитела (иммунные и исследуемые сыворотки), антигены (культуры микроорганизмов, диагностикумы, экстракты, лизаты, гаптены, эритроциты, токсины), комплемент, изотонический раствор натрия хлорида.

Внимание! В серологических реакциях применяют только химически чистый натрия хлорид.

Сыворотки . Сыворотка больного. Сыворотку обычно получают на второй неделе болезни, когда можно ожидать наличие в ней антител, иногда пользуются сыворотками реконвалесцентов (выздоравливающих) и переболевших.

Чаще всего для получения сыворотки кровь берут из вены в количестве 3-5 мл в стерильную пробирку и направляют в лабораторию, сопровождая этикеткой, с указанием фамилии и инициалов больного, предполагаемого диагноза и даты.

Кровь следует брать натощак или не раньше чем через 6 ч после еды. В сыворотке крови после еды могут содержаться капельки жира, которые делают ее мутной и непригодной для исследования (такая сыворотка называется хилезной).

Внимание! При взятии крови необходимо соблюдать правила асептики.

Для получения сыворотки кровь оставляют на 1 ч при комнатной температуре или ставят в термостат при 37° С на 30 мин для образования сгустка.

Внимание! Не следует держать сыворотку в термостате больше 30 мин - может произойти гемолиз, что помешает проведению исследований.

Образовавшийся сгусток отделяют от стенок пробирки пастеровской пипеткой или петлей ("обводят"). Пробирку помещают в холодильник на некоторое время (обычно 1 ч, но не более 48 ч) для лучшего отделения сыворотки из сжавшегося на холоде сгустка. Затем сыворотку отсасывают стерильной пастеровской пипеткой, снабженной резиновым баллоном или шлангом.

Отсасывать сыворотку следует очень осторожно, чтобы не захватить форменные элементы. Сыворотка должна быть совершенно прозрачной без примеси клеток. Мутные сыворотки еще раз отсасывают после того, как клетки осядут. Сыворотку можно освободить от форменных элементов центрифугированием.

Внимание! На сгустке сыворотка может оставаться не более 48 ч при + 4° С.

Для получения сыворотки кровь можно брать из прокола мякоти пальца или мочки уха пастеровской пипеткой. У грудных детей кровь берут из У-образного разреза на пятке.

При использовании пастеровской пипетки кровь насасывают в пипетку из прокола. Острый конец пипетки запаивают. Пипетку помещают в пробирку острым концом вниз. Чтобы он не сломался, на дно пробирки кладут кусочек ваты. Пробирку с соответствующей этикеткой направляют в лабораторию. Скопившуюся в широком конце пипетки сыворотку отсасывают.

Иммунные сыворотки получают из крови людей или животных (чаще кроликов и лошадей), иммунизированных по определенной схеме соответствующим антигеном (вакциной). В полученной сыворотке определяют ее активность (титр), т. е. наибольшее разведение, в котором она реагирует с соответствующим антигеном в определенных условиях опыта.

Готовят сыворотки обычно на производстве. Их разливают в ампулы, на которых указывают название и титр. В большинстве случаев сыворотки высушивают. Сухую сыворотку перед употреблением растворяют в дистиллированной воде до первоначального объема (тоже указан на этикетке). Хранят все сухие (лиофилизированные) диагностические" препараты при 4-10° С.

Для серологических исследований применяют иммунные сыворотки нативные (не адсорбированные) и адсорбированные. Недостаток нативных сывороток - наличие в них групповых антител, т. е. антител к микроорганизмам, имеющим общие антигены. Обычно такие антигены встречаются у микробов, принадлежащих к одной группе, роду, семейству. Адсорбированные сыворотки отличаются строгой специфичностью: реагируют только с гомологичным антигеном. Антитела к другим (гетерогенным) антигенам удалены адсорбцией. Титр антител адсорбированных сывороток низкий (1:40, 1:320), поэтому их не разводят * .

* (В настоящее время методом биотехнологии получены особые клетки (гибридомы), вырабатывающие in vitro моноклональные антитела, т. е. антитела, реагирующие строго специфично (с одним антигеном). )

Реакция агглютинации

Реакция агглютинация (РА) - это склеивание и выпадение в осадок микробов или других клеток под действием антител в присутствии электролита (изотонического раствора натрия хлорида). Образовавшийся осадок называют агглютинатом. Для реакции необходимы:

1. Антитела (агглютинины) - находятся в сыворотке больного или в иммунной сыворотке.

2. Антиген - взвесь живых или убитых микроорганизмов, эритроцитов или других клеток.

3. Изотонический раствор.

Реакцию агглютинации для серодиагностики широко применяют при брюшном тифе, паратифах (реакция Видаля), бруцеллезе (реакция Райта) и др. Антителом при этом является сыворотка больного, а антигеном - известный микроб.

При идентификации микробов или других клеток антигеном служит их взвесь, а антителом - известная иммунная сыворотка. Эту реакцию широко применяют при диагностике кишечных инфекций, коклюша и др.

Подготовка ингредиентов: 1) получение сыворотки см. с. 200; 2) приготовление антигена. Взвесь живых микробов должна быть гомогенной и соответствовать (в 1 мл) примерно 30 ед. мутности по оптическому стандарту ГИСК. Для ее приготовления обычно используют 24-часовую культуру, выращенную на скошенном агаре. Культуру смывают 3-4 мл изотонического раствора, переносят в стерильную пробирку, определяют ее густоту и, если нужно, разводят.

Применение взвеси убитых микробов - диагностикумов - облегчает работу и делает ее безопасной. Обычно пользуются диагностикумами, приготовленными на производстве.

Постановка реакции. Существует два метода проведения этой реакции: реакция агглютинации на стекле (иногда ее называют ориентировочной) и развернутая реакция агглютинации (в пробирках).

Реакция агглютинации на стекле . На обезжиренное предметное стекло наносят 2 капли специфической (адсорбированной) сыворотки и каплю изотонического раствора. Неадсорбированные сыворотки предварительно разводят в соотношении 1:5 - 1:25. Капли на стекло наносят так, чтобы между ними было расстояние. Восковым карандашом на стекле помечают, где какая капля. Культуру петлей или пипеткой тщательно растирают на стекле, а потом вносят в каплю изотонического раствора и в одну из капель сыворотки, размешивая в каждой до образования гомогенной взвеси. Капля сыворотки, в которую не внесена культура, является контролем сыворотки.

Внимание! Нельзя переносить культуру из сыворотки в каплю изотонического раствора, которая является контролем антигена.

Реакция протекает при комнатной температуре в течение 1-3 мин. Контроль сыворотки должен оставаться прозрачным, а в контроле антигена должна наблюдаться равномерная муть. Если в капле, где культура смешана с сывороткой, появятся хлопья агглютината на фоне прозрачной жидкости, результат реакции считают положительным. При отрицательном результате реакции в капле будет равномерная муть, как в контроле антигена.

Реакция отчетливее видна, если ее рассматривать на темном фоне в проходящем свете. При ее изучении можно пользоваться лупой.

Развернутая реакция агглютинации . Готовят последовательные, чаще всего двукратные разведения сыворотки. Сыворотку больного обычно разводят от 1:50 до 1:1600, иммунную - до титра или до половины титра. Титр агглютинирующей сыворотки - ее максимальное разведение, в котором она агглютинирует гомологичные клетки.

Разведение сыворотки: 1) ставят в штатив нужное количество пробирок одинакового диаметра, высоты и конфигурации дна;

2) на каждой пробирке указывают степень разведения сыворотки, кроме того, на 1-й пробирке пишут номер опыта или название антигена. На пробирках контролей пишут "КС" - контроль сыворотки и "КА" - контроль антигена;

3) во все пробирки наливают по 1 мл изотонического раствора;

4) в отдельной пробирке готовят исходное (рабочее) разведение сыворотки. Например, для приготовления рабочего разведения 1:50, в пробирку наливают 4,9 мл изотонического раствора и 0,1 мл сыворотки. На пробирке обязательно указывают степень ее разведения. Исходное разведение сыворотки вносят в первые две пробирки и в пробирку контроля сыворотки;

5) готовят последовательные двукратные разведения сыворотки.

Примерная схема ее разведения приведена в табл. 16.

Примечание. Стрелки указывают перенос жидкости из пробирки в пробирку; из 5-й пробирки и пробирки контроля сыворотки 1,0 мл выливают в дезинфицирующий раствор.

Внимание! Во всех пробирках должен быть одинаковый объем жидкости.

После того как сделаны разведения сыворотки, во все пробирки, кроме контроля сыворотки, вносят по 1-2 капли антигена (диагностикума или свежеприготовленной взвеси бактерий). В пробирках при этом должна появиться небольшая равномерная муть. Контроль сыворотки остается прозрачным.

Пробирки тщательно встряхивают и помещают в термостат (37° С). Предварительный учет результатов реакции производят через 2 ч, а окончательный - спустя 18-20 ч (выдерживая при комнатной температуре).

Учет результатов как всегда начинают с контролей. Контроль сыворотки должен оставаться прозрачным, контроль антигена - равномерно мутным. Просматривают пробирки в проходящем свете (очень удобно на темном фоне) невооруженным глазом, с помощью лупы или агглютиноскопа.

Агглютиноскоп - прибор, состоящий из полой металлической трубки, укрепленной на подставке. Сверху на ней расположен окуляр с регулирующим винтом. Под трубкой прикреплено вращающееся зеркало. Пробирку с изучаемой жидкостью вставляют сбоку в отверстие трубки на такое расстояние, чтобы находящаяся в ней жидкость была под окуляром. Установив с помощью зеркала освещение и сфокусировав окуляр, определяют наличие и характер агглютината.

При положительном результате реакции в пробирках видны зерна или хлопья агглютината. Агглютинат постепенно оседает на дно в виде "зонтика", а жидкость над осадком просветляется (сравните с равномерно мутным контролем антигена).

Для изучения величины и характера осадка содержимое пробирок слегка встряхивают. Различают мелкозернистую и хлопьевидную агглютинацию. Мелкозернистая (О-агглютинация) получается при работе с О-сыворотками * . Хлопьевидная (Н) - при взаимодействии подвижных микроорганизмов со жгутиковыми Н-сыворотками.

* (О-сыворотки содержат антитела к О (соматическому)-антигену, Н-сыворотки - к жгутиковому. )

Хлопьевидная агглютинация наступает быстрее, образующийся при этом осадок очень рыхлый и легко разбивается.

Все клетки осели, жидкость в пробирке совершенно прозрачна. Результат реакции резко положительный.

Осадок меньше, нет полного просветления жидкости. Результат реакции положительный.

Осадок еще меньше, жидкость мутная. Результат реакции слабо положительный.

Незначительный осадок, жидкость мутная. Сомнительный результат реакции.

Осадка нет, жидкость равномерно мутная, как в контроле антигена. Отрицательный результат реакции.

Возможные ошибки при постановке реакции агглютинации . 1. Спонтанная (самопроизвольная) агглютинация. Некоторые клетки, особенно микробы в R-форме, не дают однородной (гомогенной) взвеси, быстро выпадают в осадок. Во избежание этого следует пользоваться культурой в S-форме, которая не дает спонтанной агглютинации.

2. В сыворотке здоровых людей имеются антитела к некоторым микроорганизмам (так называемые "нормальные антитела"). Титр их невысок. Поэтому положительный результат реакции в разведении 1:100 и выше говорит о ее специфичности.

3. Групповая реакция с близкими по антигенному строению микробами. Например, сыворотка больного брюшным тифом может также агглютинировать бактерии паратифа А и Б. В отличие от специфической групповая реакция идет в более низких титрах. Адсорбированные сыворотки не дают групповой реакции.

4. Следует учесть, что специфические антитела после перенесенной болезни и даже после прививок могут сохраняться длительное время. Они называются "анамнестическими". Чтобы отличить их от "инфекционных" антител, образующихся в течение текущей болезни, реакцию ставят в динамике, т. е. исследуют сыворотку больного, взятую повторно через 5-7 дней. Повышение титра антител говорит о наличии болезни - титр "анамнестических" антител не повышается, а может даже снизиться.

Контрольные вопросы

1. Что такое реакции иммунитета, каковы их основные свойства?

2. Какие компоненты участвуют в серологических реакциях? Почему реакции называют серологическими, из скольких фаз они состоят?

3. Что такое реакция агглютинации? Ее использование и методы проведения. Что такое диагностикум?

4. Каким антигеном пользуются при исследовании сыворотки больного? Какой сывороткой определяют вид неизвестного микроба?

5. Что такое О- и Н-агглютинация? В каких случаях образуется хлопьевидный осадок и когда мелкозернистый?

Задание

1. Поставьте развернутую реакцию агглютинации для определения титра антител в сыворотке больного и учтите ее результат.

2. Поставьте реакцию агглютинации на стекле для определения вида выделенного микроорганизма.

Реакция гемагглютинации

В лабораторной практике пользуются двумя различными по механизму действия реакциями гемагглютинации (РГА).

Первая РГА относится к серологическим. В этой реакции эритроциты агглютинируются при взаимодействии с соответствующими антителами (гемагглютининами). Реакцию широко используют для определения групп крови.

Вторая РГА не является серологической. В ней склеивание эритроцитов вызывают не антитела, а особые вещества, образуемые вирусами. Например, вирус гриппа агглютинирует эритроциты кур и морских свинок, вирус полиомиелита - эритроциты барана. Эта реакция позволяет судить о наличии того или иного вируса в исследуемом материале.

Постановка реакции. Реакцию ставят в пробирках или на специальных пластинах с лунками. Исследуемый на наличие вируса материал разводят изотоническим раствором от 1:10 до 1:1280; 0,5 мл каждого разведения смешивают с равным объемом 1-2% взвеси эритроцитов. В контроле 0,5 мл эритроцитов смешивают с 0,5 мл изотонического раствора. Пробирки ставят в термостат на 30 мин, а пластины оставляют при комнатной температуре на 45 мин.

Учет результатов. При положительном результате реакции на дне пробирки или лунки выпадает осадок эритроцитов с фестончатыми краями ("зонтик"), покрывающий все дно лунки. При отрицательном результате эритроциты образуют плотный осадок с ровными краями ("пуговку"). Такой же осадок должен быть в контроле. Интенсивность реакции выражают знаками "плюс". Титром вируса является максимальное разведение материала, в котором происходит агглютинация.

Реакция торможения гемагглютинации

Это серологическая реакция, в которой специфические противовирусные антитела, взаимодействуя с вирусом (антигеном), нейтрализуют его и лишают способности агглютинировать эритроциты, т. е. тормозят реакцию гемагглютинации. Высокая специфичность реакции торможения гемагглютинации (РТГА) позволяет с ее помощью определить вид и даже тип вирусов, обнаруженных при постановке РГА.

Постановка реакции. 0,25 мл противовирусной сыворотки в последовательных двукратных разведениях от 1:10 до 1:2560 смешивают с равным объемом материала, содержащего вирус, разведенного в 4 раза меньше титра, установленного в РГА. Смесь встряхивают и помещают в термостат на 30 мин, после чего добавляют по 0,5 мл 1-2% взвеси эритроцитов.

Реакцию сопровождают тремя контролями (табл. 17).

Учет результатов производят после повторной инкубации в термостате в течение 30 или 45 мин при комнатной температуре. При правильной постановке опыта в контроле сыворотки и эритроцитов должна образоваться "пуговка" - нет агглютинирующего эритроциты фактора; в контроле антигена образуется "зонтик" - вирус вызвал агглютинацию эритроцитов.

В опыте, если сыворотка гомологична изучаемому вирусу, образуется "пуговка" - сыворотка нейтрализовала вирус. Титр сыворотки - это ее максимальное разведение, в котором происходит задержка гемагглютинации.

Реакция непрямой гемагглютинации

Реакция непрямой (пассивной) гемагглютинации (РНГА) основана на том, что эритроциты, если на их поверхности адсорбировать растворимый антиген, приобретают способность агглютинироваться при взаимодействии с антителами к адсорбированному антигену. Схема РНГА представлена на рис. 34. РНГА широко применяют при диагностике ряда инфекций.

Постановка реакции. Испытуемую сыворотку прогревают 30 мин при 56° С, разводят последовательно в соотношении 1:10 - 1:1280 и разливают по 0,25 мл в пробирки или лунки, куда затем добавляют по 2 капли эритроцитарного диагностикума (эритроциты с адсорбированным на них антигеном).

Контроли: взвесь эритроцитарного диагностикума с заведомо иммунной сывороткой; взвесь диагностикума с нормальной сывороткой; взвесь нормальных эритроцитов с испытуемой сывороткой. В первом контроле должна произойти агглютинация, во втором и третьем ее не должно быть.

При помощи РИГА можно определять неизвестный антиген, если на эритроциты адсорбировать заведомо известные антитела.

Реакцию гемагглютинации можно ставить в объеме 0,025 мл (микрометод), пользуясь микротитратором Такачи.

Контрольные вопросы

1. О чем свидетельствует положительный результат РГА между эритроцитами и исследуемым на наличие вируса материалом?

2. Произойдет ли агглютинация эритроцитов, если к ним добавить вирус и соответствующую ему сыворотку? Как называется реакция, выявляющая этот феномен?

Задание

Учтите и зарегистрируйте результат РИГА.

Реакция преципитации

В реакции преципитации происходит выпадение в осадок специфического иммунного комплекса, состоящего из растворимого антигена (лизата, экстракта, гаптена) и специфического антитела в присутствии электролитов.

Образующееся в результате этой реакции мутное кольцо или осадок называют преципитатом. От реакции агглютинации эта реакция в основном отличается размером частиц антигена.

Реакцию преципитации обычно применяют для определения антигена при диагностике ряда инфекций (сибирская язва, менингит и др.); в судебной медицине - для определения видовой принадлежности крови, спермы и др.; в санитарно-гигиенических исследованиях - при установлении фальсификации продуктов; с ее помощью определяют филогенетическое родство животных и растений. Для реакции необходимы:

1. Антитела (преципитины) - иммунная сыворотка с высоким титром антител (не ниже 1:100000). Титр преципитирующей сыворотки устанавливают по наибольшему разведению антигена, с которым она дает реакцию. Сыворотку обычно применяют неразведенной или в разведении 1:5 - 1:10.

2. Антиген - растворенные вещества белковой или липоиднополисахаридной природы (полные антигены и гаптены).

3. Изотонический раствор.

Основные методы проведения реакции преципитации: реакция кольцепреципитации и реакция преципитации в агаре (геле).

Внимание! Все компоненты, участвующие в реакции преципитации, должны быть совершенно прозрачными.

Реакция кольцепреципитации . В преципитационную пробирку с помощью пастеровской пипетки вносят 0,2-0,3 мл (5-6 капель) сыворотки (сыворотка не должна попадать на стенки пробирки). На сыворотку осторожно наслаивают антиген в таком же объеме, наливая его тонкой пастеровской пипеткой по стенке пробирки. Пробирку при этом держат в наклонном положении. При правильном наслаивании между сывороткой и антигеном должна получиться четкая граница. Осторожно, чтобы не перемешать жидкости, пробирку ставят в штатив. При положительном результате реакции на границе антигена и антитела образуется мутное "кольцо" - преципитат (см. рис. 48).

Реакцию сопровождают рядом контролей (табл. 18). Очень важна последовательность внесения в пробирку ингредиентов реакции. Нельзя наслаивать сыворотку на антиген (в контроле - на изотонический раствор), так как относительная плотность сыворотки больше, она опустится на дно пробирки, и граница между жидкостями не выявится.

Примечание. + наличие "кольца"; - отсутствие "кольца".

Учет результатов производят через 5-30 мин, в некоторых случаях через час, как всегда начиная с контролей. "Кольцо" во 2-й пробирке свидетельствует о способности иммунной сыворотки вступать в специфическую реакцию с соответствующим антигеном. В 3-5-й пробирках "колец" не должно быть - там нет соответствующих друг другу антител и антигенов. "Кольцо" в 1-й пробирке - положительный результат реакции - говорит о том, что испытуемый антиген соответствует взятой иммунной сыворотке, отсутствие "кольца" ("кольцо" только во 2-й пробирке) свидетельствует о их несоответствии - отрицательный результат реакции.

Реакция преципитации в агаре (геле) . Особенность реакции в том, что взаимодействие антигена и антитела происходит в плотной среде, т. е. в геле. Образующийся преципитат дает в толще среды мутную полосу. Отсутствие полосы свидетельствует о несоответствии компонентов реакции. Эту реакцию широко применяют при медико-биологических исследованиях, в частности при изучении токсинообразования у возбудителя дифтерии.

Контрольные вопросы

1. В чем основное различие между реакцией агглютинации и преципитации?

2. Почему нельзя применять мутные ингредиенты в реакции преципитации?

Задание

1. Поставьте реакцию кольцепреципитации и зарисуйте результат.

2. Изучите характер взаимодействия антигена с антителом в реакции преципитации в агаре, зарисуйте результат (чашку получите у преподавателя).

Реакция лизиса (иммунный цитолиз)

Иммунный лизис - это растворение клеток под воздействием антител при обязательном участии комплемента. Для реакции необходимы:

1. Антиген - микробы, эритроциты или другие клетки.

2. Антитело (лизин) - иммунная сыворотка, реже сыворотка больного. Бактериолитическая сыворотка содержит антитела, участвующие в лизисе бактерий; гемолитическая - гемолизины, способствующие лизису эритроцитов; для лизиса спирохет нужны спирохетолизины, клеток - итолизины и т. д.

3. Комплемент. Больше всего комплемента в сыворотке морских свинок. Эту сыворотку (смесь от нескольких животных) обычно используют в качестве комплемента. Свежий (нативный) комплемент нестоек и легко разрушается при нагревании, встряхивании, хранении, поэтому пользоваться им можно не дольше двух дней после получения. Для консервации комплемента к нему добавляют 2% борной кислоты и 3% сульфата натрия. Такой комплемент можно сохранять при 4° С до двух недель. Чаще применяют сухой комплемент. Перед употреблением его растворяют в изотоническом растворе до первоначального объема (указан на этикетке).

4. Изотонический раствор.

Реакция гемолиза (табл. 19). Для реакции необходимы:

1. Антиген - 3% взвесь отмытых эритроцитов барана из расчета 0,3 мл осадка эритроцитов и 9,7 мл изотонического раствора.

2. Антитело - гемолитическая сыворотка (гемолизин) против эритроцитов барана; обычно готовят на производстве, лиофилизируют и на этикетке указывают титр.

Титр гемолизина - то наибольшее разведение сыворотки, при котором происходит полный гемолиз 3% взвеси эритроцитов в присутствии комплемента. Для реакции гемолиза гемолизин берут в тройном титре, т. е. разводят в 3 раза меньше, чем до титра. Например, при титре сыворотки 1:1200, сыворотку разводят 1:400 (0,1 мл сыворотки * и 39,9 мл изотонического раствора). Избыток гемолизина необходим, так как часть его могут адсорбировать другие компоненты реакции.

* (Меньше 0,1 мл сыворотки брать не следует - страдает точность измерения. )

3. Комплемент разводят 1:10 (0,2 мл комплемента и 1,8 мл изотонического раствора).

4. Изотонический раствор.

Учет результатов. При правильно поставленной реакции в 1-й пробирке произойдет гемолиз - содержимое ее станет прозрачным. В контролях жидкость остается мутной: во 2-й пробирке для наступления гемолиза недостает комплемента, в 3-й - нет гемолизина, в 4-й - нет ни гемолизина, ни комплемента, в 5-й - антиген не соответствует антителу,

В случае надобности гемолитическую сыворотку титруют по следующей схеме (табл. 20).

Перед титрованием готовят исходное разведение сыворотки 1:100 (0,1 мл сыворотки и 9,9 мл изотонического раствора), из которого делают необходимые разведения, например:

Из этих разведений вносят по 0,5 мл сыворотки в пробирки опыта титрования, как показано в табл. 20.

В примере, приведенном в табл. 20, титр гемолитической сыворотки равен 1:1200.

При использовании свежей гемолитической сыворотки ее необходимо инактивировать, чтобы разрушить имеющийся в ней комплемент. Для этого ее прогревают 30 мин при 56° С на водяной бане или в инактиваторе с терморегулятором. Последний способ лучше: он исключает возможность перегрева сыворотки, т. е. ее денатурации. Денатурированные сыворотки непригодны для опыта.

Реакция бактериолиза . В этой реакции комплемент лизирует бактерии в присутствии соответствующей (гомологичной) сыворотки. Схема реакции принципиально сходна со схемой реакции гемолиза. Отличие состоит в том, что после двухчасовой инкубации из всех пробирок делают высев на чашки Петри со средой, благоприятной для взятого в опыт микроорганизма, чтобы узнать, лизирован ли он. При правильно поставленном опыте в посевах из 2-5-й пробирок (контроли) должен быть обильный рост. Отсутствие роста или слабый рост в посеве из 1-й пробирки (опыт) говорит о гибели микробов, т. е. о том, что они гомологичны антителу.

Внимание! Реакцию бактериолиза необходимо проводить в асептических условиях.

Контрольные вопросы

1. Что произойдет с эритроцитами, если вместо изотонического раствора натрия хлорида применить дистиллированную воду? Что лежит в основе этого феномена?

2. Какая реакция произойдет при взаимодействии эритроцитов с гомологичной иммунной сывороткой в отсутствии комплемента?

Задание

Поставьте реакцию гемолиза. Зафиксируйте и зарисуйте результат.

Реакция связывания комплемента

Реакция связывания комплемента (РСК) основана на том, что специфический комплекс антиген - антитело всегда адсорбирует на себе (связывает) комплемент.

Эту реакцию широко применяют при идентификации антигенов и в серодиагностике инфекций, особенно заболеваний, вызванных спирохетами (реакция Вассермана), риккетсиями и вирусами.

РСК - сложная серологическая реакция. В ней участвуют комплемент и две системы антиген - антитело. По существу, это две серологические реакции.

Первая система - основная состоит из антигена и антитела (один известный, другой нет). К ней добавляют определенное количество комплемента. При соответствии антигена и антитела этой системы они соединятся и свяжут комплемент. Образовавшийся комплекс мелкодисперсный и не виден.

Об образовании этого комплекса узнают с помощью второй системы гемолитической или индикаторной. В нее входят эритроциты барана (антиген) и соответствующая им гемолитическая сыворотка (антитело), т. е. готовый иммунный комплекс. В этой системе лизис эритроцитов может произойти только в присутствии комплемента. Если комплемент связан первой системой (при соответствии в ней антигена и антитела), то во второй системе гемолиза не будет - так как нет свободного комплемента. Отсутствие гемолиза (содержимое пробирки мутное или на дне ее осадок эритроцитов) регистрируют как положительный результат РСК (рис. 35).

Если в первой системе антиген не соответствует антителу, то иммунный комплекс не образуется и комплемент останется свободным. Оставшийся свободным, комплемент участвует во второй системе, вызывая гемолиз, - результат РСК отрицательный (содержимое пробирок прозрачно - "лаковая кровь").

Компоненты реакции связывания комплемента: 1. Антиген - обычно лизат, экстракт, гаптен; взвесь микроорганизмов Основная 2. Антитело - сыворотка больного система 3. Комплемент - сыворотка морских свинок 4. Антиген - эритроциты барана Гемолити- 5. Антитело - гемолизин к эритроцитам барана ческая 6. Изотонический раствор система

Ввиду того что в РСК участвует большое количество сложных компонентов, они должны быть предварительно оттитрованы и взяты в реакцию в точных количествах и в равных объемах: по 0,5 или 0,25, реже по 0,2 мл. Соответственно весь опыт проводят в объемах 2,5, 1,25 или 1,0 мл (большие объемы дают более точный результат). Титрование компонентов реакции проводят в том же объеме, в каком ставят опыт, заменяя недостающие ингредиенты изотоническим раствором.

Подготовка ингредиентов

1. Гемолитическая сыворотка (гемолизин). Сыворотку разводят в 3 раза меньше ее титра. Готовят общее разведение сыворотки для всего опыта; объем которого определяют, умножив объем сыворотки в одной пробирке (например, 0,5 мл) на число пробирок, немного превышающее число их в опыте * .

* (Избыток жидкости необходим при приготовлении всех компонентов реакции: часть ее остается на стенках пробирок, колб, пипеток. )

2. Эритроциты барана . Готовят 3% взвесь отмытых эритроцитов барана на все количество пробирок в опыте.

Для приготовления гемолитической системы за 30 мин до внесения ее в опыт смешивают равные объемы разведенного гемолизина и взвеси эритроцитов, приливая сыворотку к эритроцитам, тщательно перемешивают и инкубируют 30 мин при 37° С (сенсибилизируют).

3. Комплемент обычно разводят 1:10. Перед каждым опытом его обязательно титруют. Титр комплемента - это его наименьшее количество, при добавлении которого к гемолитической системе происходит полный гемолиз в течение 1 ч при 37° С. Схема титрования комплемента представлена в табл. 21.

Примечание. Общий объем жидкости в пробирках 2,5 мл.

Внимание! Титруют комплемент в таком же объеме, в каком ставят основной опыт, заменяя изотоническим раствором недостающие ингредиенты.

Учет результатов. В контролях не должно быть даже следов гемолиза, так как в одном из них нет комплемента, в другом - гемолизина. Контроли свидетельствуют об отсутствии у компонентов реакции гемотоксичности (способности спонтанно лизировать эритроциты).

В приведенном в табл. 21 примере титр комплемента в разведении 1:10 равен 0,15 мл. В опыте активность комплемента может снизиться за счет неспецифической адсорбции его другими компонентами реакции, поэтому для опыта количество комплемента увеличивают: берут следующую за титром дозу. Это - рабочая доза. В приведенном примере она равна 0,2 мл комплемента в разведении 1:10. Так как все компоненты, участвующие в РСК, должны быть взяты в равных объемах (в нашем примере он равен 0:5 мл), необходимо к рабочей дозе комплемента (0,2 мл 1:10) добавить 0,3 мл изотонического раствора. Для всего опыта объем каждого из них (комплемента и изотонического раствора) умножают на число пробирок, участвующих в РСК. Например, для проведения опыта в 50 пробирках нужно взять 10 мл комплемента 1:10 (0,2 мл × 50) и 15 мл изотонического раствора (0,3 мл × 50).

4. Антиген обычно получают готовым с указанием его титра, т. е. того количества, которое после разведения антигена должно содержаться в 1 мл. Например, при титре 0,4 его разводят в 0,96 мл изотонического раствора. В опыт берут количество антигена, равное половине титра (0,5 мл). Это его рабочая доза. Готовят общее разведение антигена для всего опыта, умножая 0,5 мл на число пробирок в опыте.

5. Антитело - сыворотка больного. Свежую сыворотку перед опытом инактивируют, чтобы разрушить имеющийся в ней комплемент. Для этого ее прогревают 30 мин при 56° С на водяной бане или в инактиваторе с терморегулятором. Последний способ предпочтительнее: он исключает возможность перегрева сыворотки, т. е. ее денатурации. Денатурированные сыворотки не пригодны для опыта. Сыворотку больного обычно применяют в разведении от 1:10 до 1:160.

Иммунные сыворотки чаще всего готовят в производственных условиях и выпускают инактивированными. Их разводят 1:50 и выше.

Внимание! Все компоненты готовят с небольшим избытком.

Проведение основного опыта

При постановке опыта крайне важна последовательность добавления компонентов. Опыт проводят в две фазы (табл. 22).

1 (В опыте сыворотку можно изучать в последовательных двукратных разведениях. )

Фаза I . В пробирки наливают требуемое количество изотонического раствора натрия хлорида, затем - требуемый объем разведенной сыворотки и в таком же объеме рабочие дозы антигена и комплемента. Опыт обязательно сопровождают контролем всех участвующих в нем ингредиентов: сыворотки, антигена, гемолитической системы и комплемента.

Пробирки тщательно встряхивают и инкубируют при 37° С 45 мин - 1 ч или при 4° С ("РСК на холоде") 18 ч. За это время при наличии специфического комплекса происходит связывание комплемента. Проведение реакции "на холоде" значительно повышает ее чувствительность и специфичность.

Фаза II . По окончании инкубации во все пробирки добавляют по 1 мл гемолитической системы, которую предварительно выдерживают в термостате 30 мин (сенсибилизируют). Пробирки встряхивают и снова ставят в термостат.

Учет результатов. Пробирки оставляют в термостате до полного гемолиза в 2, 3, 6 и 7-й пробирках (контроль сыворотки, антигена и комплемента на одну и две дозы). Раньше всего гемолиз наступит в 7-й пробирке, в которой находится двойное количество комплемента. После того как в этой пробирке произойдет гемолиз и содержимое ее станет совершенно прозрачным, нужно особенно внимательно следить за остальными контролями. Как только жидкость в 2, 3 и 6-й пробирках станет прозрачной, следует немедленно вынуть штатив с пробирками из термостата. О том, что опыт не задержали в термостате дольше, чем нужно, говорит наличие легкой мути (неполного гемолиза) в 5-й пробирке - в ней находится только половина рабочей дозы комплемента и полного гемолиза при правильной постановке опыта быть не может.

Гемолиз в контроле сыворотки и антигена (пробирки 2 и 3) указывает на то, что дозы их были выбраны правильно и что сами по себе ни сыворотка, ни антиген комплемент не связывают.

В контроле гемолитической системы (пробирка 4) при ее правильной работе не должно быть даже следов гемолиза - в ней отсутствует комплемент.

Убедившись в том, что контроли прошли правильно, можно учитывать опыт. Отсутствие гемолиза в пробирках опыта расценивают как положительный результат реакции. Он свидетельствует о том, что в сыворотке есть антитела, специфичные в отношении взятого антигена. Образованный ими комплекс связал комплемент и воспрепятствовал его участию в реакции гемолиза. Если в опытных пробирках наступит гемолиз, результат реакции оценивают как отрицательный. В данном случае нет соответствия между антигеном и антителом, комплемент не связан и участвует в реакции гемолиза.

Параллельно с сывороткой больного ставят такой же опыт с заведомо положительной сывороткой (т. е. с сывороткой, в которой есть антитела к данному антигену) и заведомо отрицательной, в которой нет специфических антител. При правильной постановке опыта в первом случае должна быть задержка гемолиза, а во втором случае будет гемолиз.

Интенсивность реакции выражают следующим образом:

Полная задержка гемолиза. Эритроциты образуют равномерную муть или оседают на дно. В этом случае жидкость в пробирке становится бесцветной;

Лизировано примерно 25% эритроцитов. Осадок меньше, жидкость над ним слегка розовая. Результат РСК также оценивают как резко положительный;

Лизировано примерно 50% эритроцитов. Осадок небольшой, жидкость розовая. Положительный результат РСК;

Лизировано примерно 75% эритроцитов. Незначительный осадок, над ним интенсивно окрашенная жидкость. Сомнительный результат РСК;

Лизированы все эритроциты. Жидкость интенсивно окрашена и совершенно прозрачна. Отрицательный результат РСК.

Контрольные вопросы

1. В чем состоит принцип РСК?

2. Какие системы участвуют в РСК? Из чего состоит и какую роль в реакции выполняет гемолитическая система?

3. В чем состоит подготовка к основному опыту РСК? В какой последовательности его проводят? Сколько фаз в РСК?

4. О чем говорит отсутствие гемолиза в РСК?

Задание

1. Проведите титрование комплемента и установите его рабочую дозу.

2. Произведите расчет всех ингредиентов для постановки основного опыта, проведите опыт, учтите и зарисуйте результат.

Peaкция иммунофлюоресценции

В реакции иммунофлюоресценции (РИФ) используют люминесцентную микроскопию (см. главу 2) для серологических исследований. Реакция основана на том, что иммунные сыворотки, к которым химическим путем присоединены флюорохромы, при взаимодействии с соответствующими антигенами образуют специфический светящийся комплекс, видимый в люминесцентном микроскопе. Такие сыворотки называются люминесцирующими * . Метод высокочувствителен, прост, не требует выделения чистой культуры (можно обнаружить микроорганизмы непосредственно в материале от больного: кале при холере, мокроте при коклюше, мозговой ткани при бешенстве). Результат можно получить через полчаса после нанесения на препарат люминесцирующей сыворотки. Поэтому РИФ широко применяют при экспресс (ускоренной)-диагностике ряда инфекций.

* (Флюрохромы: флюоресцеин дает зеленое свечение, родамин - красное. )

Для приготовления препаратов предметное стекло с фиксированным мазком (отпечатком, срезом) помещают во влажную камеру. Камеру готовят следующим образом. На дно чашки Петри кладут влажную фильтровальную бумагу. На нее параллельно укладывают две стеклянные палочки (можно использовать широкую часть пастеровских пипеток). На них мазком вверх помещают предметное стекло.

Внимание! Не забудьте мазок с обратной стороны обвести восковым карандашом.

На мазок наносят каплю люминесцирующей сыворотки. Закрывают чашку и помещают в термостат или оставляют при комнатной температуре на 20-30 мин. После инкубации промывают забуференным изотоническим раствором (рН 7,4), ополаскивают дистиллированной водой, высушивают, наносят каплю забуференного глицерина, накрывают покровным стеклом (не толще 0,17 мм!) и рассматривают в люминесцентном микроскопе. Если в препарате есть микробы, гомологичные антителам люминесцирующей сыворотки, они ярко светятся на темном фоне. Этот метод называется прямой (рис. 36). Неудобство прямого метода РИФ состоит в том, что для его постановки необходимы люминесцирующие сыворотки к каждому определяемому антигену, готовить которые сложно, а полного набора готовых люминесцирующих сывороток к любому антигену нет. Поэтому пользуются часто непрямым методом. Он заключается в том, что на первом этапе препарат обрабатывают нелюминесцирующей иммунной специфической сывороткой к искомому антигену. В случае, если в препарате имеются искомые антигены (микробы), то образуется комплекс антиген - антитело, который увидеть нельзя. После высушивания, на втором этапе препарат обрабатывают люминесцирующей сывороткой, содержащей антитела не к искомому антигену, а к глобулинам того вида животного, от которого получена специфическая сыворотка. Например, если первая сыворотка получена при иммунизации кролика, то вторая должна содержать антитела к кроличьим глобулинам (см. рис. 36). Эти антитела соединяются с глобулинами специфической сыворотки, которые адсорбировались на искомом антигене, и комплекс светится при рассматривании препарата в люминесцентный микроскоп.

Опсонофагоцитарная реакция

Опсонофагоцитарная реакция (ОФР) является одним из методов оценки активности иммунного фагоцитоза. Чем эта активность выше, тем выше устойчивость организма к инфекции. В иммунном организме под влиянием антител (опсонинов) фагоцитоз протекает активнее (поглощается большее количество микробов в более короткий срок). Поэтому показатели фагоцитарной активности имеют не только диагностическое значение (например, при бруцеллезе), но и позволяют прогнозировать исход инфекционного процесса, оценивать результаты лечения и вакцинации. Для реакции необходимы:

1. Антиген - взвесь живых или убитых микроорганизмов.

2. Антитело (опсонины) - исследуемая сыворотка.

3. Фагоциты - обычно нейтрофилы исследуемой крови.

Постановка реакции. С помощью микропипетки в небольшие пробирки наливают 0,05 мл 2% раствора натрия цитрата; 0,1 мл исследуемой крови и 0,05 мл взвеси микроорганизмов, густота которой соответствует в 1 мл 10 ед. мутности по оптическому стандарту ГИСК.

Внимание! Для каждого ингредиента должна быть использована отдельная пипетка.

Содержимое пробирок перемешивают. Пробирки ставят в термостат на 30 мин, после чего вновь перемешивают их содержимое и готовят тонкие мазки (как мазки крови). Окрашивают по Романовскому - Гимзе.

Учет результатов. В разных местах мазка подсчитывают 25 нейтрофилов, учитывая в каждом из них количество захваченных микроорганизмов. Показатель опсонофагоцитарной реакции (ПОФР) вычисляют по формуле:

ПОФР = 3а + 2б + 1с + 0,

где а - число нейтрофилов, содержащих свыше 41 бактерии; б - число нейтрофилов, содержащих от 21 до 40 бактерий; с - число нейтрофилов, содержащих от 1 до 20 бактерий; 0 - число нейтрофилов, не содержащих бактерии.

Максимальный показатель опсонофагоцитарной реакции при такой системе учета составляет 75.

Результат реакции оценивают по следующей схеме:

при ПОФР от 1 до 24 - слабоположительный;

при ПОФР от 25 до 49 - ясновыраженный;

при ПОФР от 50 до 75 - резкоположительный.

У здоровых людей ПОФР составляет 0-1, редко 4-5. Ясновыраженный и резкоположительный результаты реакции говорят о высоком опсонизирующем действии сыворотки обследуемого лица с выраженной активностью фагоцитов крови.

Определение только активности антител - опсонинов проводится опытом установления опсоиического индекса - отношения фагоцитарного показателя в присутствии иммунной (исследуемой) сыворотки к фагоцитарному показателю в сыворотке, заведомо не содержащей антител к данному микробу. Опыт ставят так: берут 2 пробирки, в одну из которых (опытную) вносят в равных количествах (обычно по 0,2 мл): 1) сыворотку обследуемого лица; 2) взвесь микробов, в котором определяют наличие опсонинов; 3) лейкоциты (можно из брюшной полости мыши). В контрольную пробирку вносят: 1) сыворотку без опсонинов (контрольную); 2) те же микробы, что и в опытную; 3) лейкоциты (те же, что и в опытную пробирку).

Обе пробирки выдерживают в термостате в течение 30 мин, а затем из той и другой готовят мазки, фиксируют и окрашивают по Романовскому - Гимзе. Микроскопируют мазки и определяют фагоцитарный показатель в опытной и контрольной пробирках.

При наличии опсонинов в исследуемой сыворотке опсонический индекс будет больше единицы. Чем больше число, полученное от деления показателя фагоцитоза исследуемой на фагоцитарный показатель контрольной сыворотки, тем более выражено действие антител - опсонинов.

Контрольные вопросы

1. На каком свойстве антител основана ОФР? Специфична ли эта реакция?

2. О чем свидетельствует показатель ОФР, равный 75?

Задание

Исследуйте ОФР крови, взятой из пальца. Зарисуйте фагоциты. Вычислите ПОРФ.

Реакции иммунитета in vivo (кожаные пробы)

При нанесении антигена на скарифицированную кожу или введении внутрикожно можно выявить как иммунное состояние, так и состояние повышенной чувствительности к данному препарату.

Кожная проба с токсином . Внутрикожно вводят оттитрованное количество токсина. Если организм иммунен, т. е. обладает определенным уровнем антитоксина, действие токсина не проявится - произойдет нейтрализация токсина антитоксином. В неиммунном организме на месте введения токсина разовьется воспалительный инфильтрат (краснота, уплотнение и т. д.).

Кожные пробы с аллергеном (кожно-аллергические пробы) для изучения реакций повышенного типа (см. главу 13). При повышенной чувствительности немедленного типа введенный аллерген (антиген) вступает в реакцию с антителами, адсорбированными на клетках различных органов. Повышенная чувствительность замедленного типа обусловлена реакцией на аллерген сенсибилизированных Т-лимфоцитов. Такая сенсибилизация бывает при ряде инфекций у больных, переболевших и привитых (туберкулез, бруцеллез и др.). Поэтому кожно-аллергические пробы при этих инфекциях имеют диагностическое значение.

Препараты для кожных проб готовят специальные производства, снабжая инструкцией по их применению.

Контрольные вопросы

1. Что является антителом в кожной пробе с токсином? О чем свидетельствует отрицательный результат этой пробы?

2. Какая реакция позволяет выявить состояние повышенной чувствительности организма к инфекционному агенту?

Иммунопрофилактика и иммунотерапия инфекционных болезней

Попытки предупредить тяжелое течение смертельно опасной болезни, вызвав легкую форму заболевания, делались на протяжении столетий в разных странах мира.

Научное обоснование и практическое внедрение иммунопрофилактики впервые дал Л. Пастер, который создал принципы применения ослабленных (аттенуированных) микроорганизмов и приготовил препараты (вакцины) для предупреждения некоторых инфекционных заболеваний человека и животных.

Прошло более ста лет и в настоящее время искусственное создание иммунитета - основа борьбы с инфекционными заболеваниями.

Иммунизация - введение препаратов для создания искусственного активного иммунитета - проводится в определенные годы на протяжении всей жизни человека. В первые же дни после рождения ребенок получает вакцину БЦЖ против туберкулеза. На 1-м году жизни ему делают прививки, чтобы предупредить заболевания дифтерией, коклюшем и столбняком, вакцинируют против полиомиелита, кори и пр. Таким образом проводят специфическую профилактику инфекционных болезней, для которой используют вакцины.

Вакцины - препараты для активной иммунизации могут быть:

1. Корпускулярные (из микробных клеток) - живые и убитые.

2. Химические (антигены и антигенные фракции).

3. Анатоксины.

Живые аттенуированные вакцины готовят из живых микроорганизмов, вирулентность которых ослаблена (от лат. attenuer - ослаблять, смягчать), а иммуногенные свойства (способность вызывать невосприимчивость) сохранены.

Для получения таких микроорганизмов существуют разные способы:

1) выращивание на питательных средах, неблагоприятных для роста и размножения возбудителя; при действии физических и химических факторов (так была получена вакцина БЦЖ для профилактики туберкулеза); 2) пассирование возбудителя через организм животного, мало восприимчивого к воспроизводимой инфекции (так Л. Пастер получил вакцину против бешенства); 3) отбор естественных культур микроорганизмов, маловирулентных для человека (так получена вакцина против чумы) и др.

Живые вакцины создают напряженный иммунитет, так как вызывают процесс, сходный с естественным инфекционным, только слабо выраженный, почти без клинических проявлений. При этом приводится в действие весь механизм иммуногенеза - создается невосприимчивость.

Убитые вакцины - культуры микроорганизмов, инактивированные действием высокой температуры, химических веществ (фенол, формалин, спирт, ацетон), УФ-лучей и др. При этом подбирают такие факторы воздействия, которые полностью сохраняют иммуногенные свойства микробных клеток.

Химические вакцины - отдельные компоненты микробной клетки (антигены), полученные путем специальной обработки микробной взвеси.

Химические вакцины обычно быстро всасываются после введения в организм, что не позволяет достичь нужного иммуногенного раздражения, поэтому к вакцинам добавляют вещества, удлиняющие время всасывания: гидроксид алюминия, алюминиево-калиевые квасцы, минеральные масла и др. Это называют созданием "депо".

Химические вакцины применяют для профилактики брюшного тифа, менингита и др.

Анатоксины (от лат. ana - обратно) - это экзотоксины бактерий, обезвреженные воздействием формалина (0,3-0,4%) и выдерживанием при температуре 37° С в течение 3-4 нед. При этом происходит потеря токсических свойств, но сохранение иммуногенных.

В настоящее время получены и применяются анатоксины из токсинов возбудителей дифтерии, столбняка и др.

Анатоксины очищают от примесей питательных сред (балластные белки) и сорбируют на веществах, которые всасываются медленно из места введения.

По количеству антигенов, входящих в состав вакцины, различают: моновакцины (из одного вида антигенов), дивакцины (из двух антигенов), три вакцины (из трех антигенов) и т. д.

Ассоциированные вакцины готовят из антигенов различных бактерий и анатоксинов. Например, ассоциированная коклюшно-дифтерийно-столбнячная вакцина (АКДС) содержит убитые коклюшные микробы и анатоксины: дифтерийный и столбнячный.

Вакцины вводят внутримышечно, подкожно, накожно, внутрикожно, через рот. Иммунизируют либо однократно, либо двукратно и трехкратно с интервалами в 1-2 нед и больше. Кратность введения, интервалы между вакцинациями зависят от характера вакцины - для каждой разработаны схемы введения.

После введения вакцины могут возникнуть общие и местные реакции. К общим относятся повышение температуры (до 39° С), головная боль, недомогание. Эти явления обычно проходят через 2-3 дня. Местные реакции - краснота и инфильтрат на месте введения вакцины могут появиться через 1-2 дня после прививки. При накожном введении вакцины (против туляремии, БЦЖ и др.) появление местной реакции свидетельствует об эффективности прививки.

Существуют противопоказания для вакцинации: лихорадочное состояние, острые инфекционные заболевания, аллергия и др. Не прививают также женщин во второй половине беременности.

Вакцины и анатоксины готовят на предприятиях по производству бактерийных препаратов. Для их изготовления необходимы большие количества микробной взвеси (биомасса) или материала, содержащего вирусы.

Готовые препараты разливают в ампулы или флаконы и большей частью высушивают. Сухие препараты дольше сохраняют активность и другие свойства.

Некоторые вакцины, например полиомиелита, выпускают в виде таблеток или драже.

На каждую ампулу, флакон и коробку с препаратами наклеивают этикетки с указанием названия препарата, его объема, срока годности, номера серии и контрольного номера.

В каждую коробку кладут наставление по применению.

Хранят препараты в основном при температуре 4° С. Нельзя подвергать препараты замораживанию и оттаиванию, действию высокой температуры. При транспортировке соблюдают особые условия. Нельзя применять препараты, которые имеют трещины на ампулах и измененный внешний вид.

В СССР существует система Государственного контроля за качеством медицинских иммунобиологических препаратов, которая обеспечивает их эффективность и стандартность.

Особый вид вакцин - а у то вакцины. Их готовят в бактериологических лабораториях из микробов, выделенных от больного. Применяют аутовакцину для лечения только данного больного. Чаще всего используют аутовакцины для лечения хронически протекающих инфекций (стафилококковых и др.). Вводят аутовакцину многократно, малыми дозами по разработанной для каждой вакцины схеме. Аутовакцины стимулируют защитные силы организма, чем способствуют выздоровлению.

Сывороточные препараты применяют для создания искусственного пассивного иммунитета. К ним относят специфические иммунные сыворотки и иммуноглобулины.

Эти препараты содержат готовые антитела. Их получают из крови доноров - специально проиммунизированных людей или животных (против кори, гриппа, столбняка). Кроме того, используют сыворотку переболевших и даже здоровых людей, если в ней содержится достаточное количество антител. В качестве сырья для приготовления иммунных препаратов используют также плацентарную и абортную кровь.

Имеются антибактериальные и антитоксические сыворотки. Первые имеют более ограниченное применение. Антитоксические сыворотки применяют для лечения дифтерии, столбняка, ботулизма и др. Эти сыворотки выпускают с определенным содержанием антитоксина, которое измеряют в международных единицах (ME).

Иммунные сывороточные препараты получают из крови животных, главным образом лошадей, многократно иммунизированных. По окончании иммунизации определяют уровень антител в крови и делают кровопускание. Полученную сыворотку консервируют, контролируют ее стерильность, активность и физические свойства.

Препараты, полученные из крови лошадей, содержат чужеродные для человека белки, которые при повторном введении могут вызвать аллергические реакции: сывороточную болезнь и анафилактический шок. Для предупреждения осложнений сывороточные препараты следует вводить с предосторожностями (по Безредке) (см. главу 13). Для освобождения сывороток животных от балластных белков и концентрации антител применяют различные методы, основным из которых является метод "Диаферм-3", разработанный в нашей стране и включающий ферментативный гидролиз балластных белков.

Кроме того, для концентрации антител в меньшем объеме препарата разработаны методы выделения из сыворотки крови гамма-глобулинов, содержащих антитела. Такие препараты называют иммуноглобулинами. Их готовят из сыворотки человека (гомологичные) и животных (гетерологичные).

Эффективность иммуноглобулинов гораздо выше эффективности иммунных сывороток, а осложнений наблюдается несоизмеримо меньше. В настоящее время иммуноглобулины применяют гораздо более широко, чем сыворотки.

В нашей стране иммуноглобулины используют для профилактики кори, гепатита, краснухи и др. Профилактическое введение иммуноглобулинов проводят при подозрении на заражение или при заражении. Целесообразно вводить эти препараты в первые дни после заражения (начало инкубационного периода), пока патологический процесс еще не развился.

При лечебном применении препарата раннее его введение дает больший эффект.

Сыворотки и иммуноглобулины вводят внутримышечно и внутривенно.

Своевременное и правильное использование сывороточных препаратов позволяет снизить заболеваемость многими инфекциями.

Контрольные вопросы

1. Какие виды вакцин Вы знаете?

2. Какими препаратами создают пассивный иммунитет?

3. Что такое аутовакцина?

Основные условия реализа-ции иммунного распознавания, которое является ключевым процессом в им-мунном ответе :

  • АПК должна «сделать» оптимальное количество пептидов из чужерод-ного или собственного антигенного материала, а пептидсвязывающие бороздки ее HLA II — быть в состоянии связать эти пептиды. Этот этап назван селекцией антигенных детерминант.
  • Иммунная система конкретного человека должна иметь достаточный репертуар Т-лимфоцит ов, где содержался бы АГ-распознающий рецеп-тор, способный распознать данный чужеродный пептид. Если же такие Т-лимфоциты отсутствуют (есть «дыры» в репертуаре Т-лимфоцитов), создаются условия, при которых иммунная система неспособна распо-знавать некоторые антигены.
  • Предполагают, что с помощью пептидов и соответствующего цитокинового фона включаются механизмы запуска иммунного ответа с вклю-чением преимущественно Th 1 и Th 2.
  • Сила иммунного ответа зависит от характера пептида и молекул HLA, а также от степени соответствия между антигеном и максимально ком-плементарным антигенраспознающим рецептором, имеющимся в ре-цепторном репертуаре иммунной системы данного организма.

Следует обратить внимание на несколько важных условий, являющихся принципиальными при реализации механизма иммунного ответа (рис. 31). Иммунной системой антиген распознается в двух формах — в натуральном виде иммуноглобулиновыми рецепторами В-лимфоцитов и в виде иммуно-генного пептида антигенраспознающим рецептором Т-хелпер ов. Это необ-ходимо для осуществления корректного иммунного ответа. Известно, что именно факторы врожденной резистентности могут установить чужеродность патогена. Иммунокомпетентные клетки лишены этого свойства, что связано с особенностями формирования их рецепторов антигенного распознавания. Поэтому некоторые В-лимфоциты способны распознавать антигены, кото-рые отнюдь не являются чужеродными. Но самостоятельно они не могут развивать иммунный ответ, поскольку требуют стимулирующих влияний со стороны активированных Т-хелперов, распознавших соответствующий имму-ногенный пептид. Образование же пептида происходит за счет деятельности факторов врожденной резистентности (макрофагов, дендритных клеток), по-этому активация Т-хелперов происходит только при попадании чужеродного патогена.

Иммунная толерант-ность - это уникальное свойство иммунной системы распознавать собственные антигены, но не реагировать на них развитием эффекторных механизмов.

Механизмы, с помощью которых происходит непосредственное поврежде-ние патогена, называют эффекторными.

В результате иммунного ответа зачастую не формируются ка-кие-либо новые эффекторные механизмы. Факторы врожденной резистентности обладают мощным цитотоксическим потенциалом, который не реализуется в полном объеме на стадии первичной реакции из-за шаблонности распознавания патогена. Поэтому сложные и длительные (5-6 дней) процессы взаимодействия, пролиферации и дифференцировки иммунокомпетентных клеток, именуемые собственно иммунными реакциями, предназначены для наработки специфичес-кого механизма распознавания патогена для факторов врожденной резистентнос-ти и запоминания этого механизма на будущее. Вместе с тем именно иммунные механизмы берут на себя функцию руководства всеми факторами, задейство-ванными в борьбе с патогеном. Единственный компонент иммунной реакции, способный самостоятельно оказать повреждающий эффект, — цитотоксический Т-лимфоцит , но его эффекторный механизм мало отличается от таковою у естест-венных киллеров, относящихся к факторам врожденной резистентности.

Гуморальный иммунный ответ

Клеточный иммунный ответ

В случае внутри-клеточных патогенов и при возникновении опухолевых клеток реализуются так называемые клеточный иммунный ответ. Т-клетки, задействованные в этих реакциях, получили название Т-хелперов 1-го типа. Они продуцируют преимуще-ственно ИЛ-2, ФНО β, γ-ИФН.

Т-хелперы 1-го типа способствуют не синтезу антител , а формированию цитотоксических T-лимфоцитов (Т-киллеров). Поэтому иммунные реакции, инициируемые данными хелперами, и получили название клеточных. Сегодня склоняются к мысли, что активированные цитокинами Т-хелперов 1-го типа наивные CD8 + Т-клетки (будущие Т-киллеры) могут самостоятельно взаимо-действовать с АПК. При этом их антигенраспознающий рецептор взаимодей-ствует с комплексами пептид — HLA I, появляющимися на поверхности АПК (например, дендритных клеток), а молекула CD8 стабилизирует указанное вза-имодействие, выполняя роль корецептора. В данном случае необходимой яв-ляется экспрессия костимулирующих молекул. Их синтез АПК повышает под влиянием γ-ИФН Th I-го типа. В таком случае CD8 + Т-клетка активируется и начинает синтез ИЛ-2, который по аутокринному механизму приводит к уси-ленной пролиферации клетки — продуцента. В случае недостаточного синтеза собственного ИЛ-2 вступает в действие соответствующий цитокин Т-хелперов 1 -го типа. По окончании пролиферации происходит дифференцировка обра-зованного клона иммунных клеток. Так, из наивной CD8 + Т-клетки формиру-ется антигенспецифический компетентный Т-киллер, точнее, цитотоксический Т-лимфоцит. Он распознает соответствующие комплексы пептид — HLA I на поверхности скомпрометированных клеток (например, опухолевых), выполняя цитотоксические функции по отношению к ним. При этом взаимодействии уже не нужна экспрессия костимулирующих молекул. Материал с сайта

Сворачивание иммунного ответа происходит за счет деятельности макро-фагов благодаря их уникальному свойству совершать антигенную презентацию без отрыва от очага пребывания патогена. Поскольку макрофаги продолжают выполнять функцию фагоцитоза и цитотоксичности, именно эти клетки рас-полагают достоверной информацией о текущем состоянии патогена. В случае его элиминации прекращается антигенная презентация и экспрессия костимулирующих молекул, продукции макрофагальных провоспалительных цитоки-нов и стимуляция выработки адгезионных молекул. Перечисленные факторы удерживают активированные лимфоциты от спонтанного апоптоза. Поэтому в случае выключения макрофага из работы, что бывает при полной элими-нации патогена, происходит массовая гибель лимфоцитов, задействованных в осуществлении иммунной реакции. Выживают лишь клетки памяти — по-пуляция антигенспецифических лимфоцитов, отличающихся резистентнос-тью к спонтанному апоптозу. Именно эти клетки и обеспечат более быстрый и эффективный иммунный ответ при повторном поступлении антигена. При сворачивании иммунных реакций макрофаги синтезируют преимуществен-но трансформирующий фактор роста β. Этот цитокин подавляет экспрессию ФНО-α и стимулирует хемотаксис фибробластов в очаг воспаления На этой странице материал по темам:

ИММУННЫХ РЕАКЦИЙ

СОВРЕМЕННЫЕ ПРЕДСТАВЛЕНИЯ О МЕХАНИЗМАХ

ИММУНИТЕТА. СПЕЦИФИЧЕСКИЙ И НЕСПЕЦИФИЧЕСКИЙ

ИММУНИТЕТ. ВИДЫ ИММУНИТЕТА. НАРУШЕНИЯ

ИММУННЫХ РЕАКЦИЙ

Одним из основоположников науки о механизмах иммунных (защитных) реакций организма является французский ученый Луи Пастер, который разработал и ввел в практику вакцинацию как метод борьбы с инфекционными болезнями. Русский ученый И.И. Мечников разработал клеточную теорию иммунитета , установив механизм клеточного иммунитета, согласно которому невосприимчивость организма определяется фагоцитарной активностью лейкоцитов. Немецкий ученый Пауль Эрлих создал гуморальную теорию иммунитета , которая объясняла невосприимчивость организма выработкой в крови защитных гуморальных веществ – антител . По современным представлениям иммунитетом называется способность организма отвечать защитными реакциями на все, что ему генетически чужеродно, т.е. на микробы, вирусы, чужие клетки и ткани, на собственные, но генетически измененные клетки, а также на некоторые яды и токсины. Этим повреждающим агентам дали общее название антигены . В результате выработки иммунитета организм приобретает устойчивость к повторным воздействиям таких же антигенов, которые быстро нейтрализуются.

Защита от антигенов осуществляется посредством неспецифических и специфических механизмов, которые в свою очередь подразделяются на гуморальные и клеточные.

Неспецифические механизмы используются для обезвреживания даже тех антигенов, с которыми организм ранее вообще не сталкивался. Неспецифический гуморальный иммунитет создают защитные белки лизоцим, интерферон и др., постоянно имеющиеся в плазме крови. Неспецифический клеточный иммунитет обусловлен фагоцитарной активностью эозинофилов, базофилов, нейтрофилов и моноцитов, что обнаружил И.И. Мечников. Неспецифический гуморальный и неспецифический клеточный иммунитет обусловливают наследственный иммунитет.

При наличии наследственного иммунитета организм не восприимчив к инфекции от рождения. Различают видовой наследственный иммунитет и индивидуальный наследственный иммунитет. Человечеству присущ, например, видовой наследственный иммунитет к ящуру. На 1,5 млн. заболеваний ящуром сельскохозяйственных животных приходится всего один случай заболевания человека. Акулы почти не страдают инфекционными заболеваниями, раны у них не подвержены нагноению.

В отличие от неспецифических механизмов, лежащих в основе наследственного иммунитета, специфические механизмы обеспечивают приобретенный иммунитет . Специфические механизмы основаны на "запоминании" антигена при первом контакте с ним организма, "узнавании" его при повторном контакте и быстром уничтожении с помощью особой разновидности Т-лимфоцитов (Т-киллеров) и специально синтезированных антител, преимущественно иммуноглобулинов.

Приобретенный иммунитет подразделяется на активно приобретенный , образующийся после прививки или перенесения данного заболевания, и пассивноприобретенны й, образующийся вследствие введения сыворотки крови организма, перенесшего данное заболевание. Для образования активного иммунитета с целью предохранения от заразных болезней производят прививки , т.е. вводят в организм вакцины. Вакцины состоят из убитых, или живых, но ослабленных микробов или вирусов. Активный иммунитет длится в течение месяцев, лет и даже десятков лет. Различают активно приобретенный естественным путем иммунитет (после перенесения заболевания) и активно приобретенный искусственным путем иммунитет (после прививок). При обоих видах активного иммунитета в организме в крови образуется антитела после введения вакцины или перенесения заболевания. При пассивном иммунитете готовые антитела содержатся в сыворотках крови, вводимых в организм.

В развитии защитных реакций организма основную роль играют лимфоциты. Лимфоциты образуются из стволовых клеток костного мозга. Выходя из костного мозга, одна часть стволовых клеток с кровью поступает в вилочковую железу или тимус , где они размножаются и превращаются в тимусзависимые лимфоциты, или Т-лимфоциты . Другая часть стволовых клеток не проходит через вилочковую железу, а превращается в лимфоциты в других органах. У птиц таким органом является фабрициева сумка (Bursa ),поэтому этот вид лимфоцитов получил название В-лимфоциты. У млекопитающих и человека В-лимфоциты созревают в лимфатических узлах . В-лимфоциты живут несколько дней, а затем начинают размножаться, производя идентичные дочерние клетки.

Т-лимфоциты обеспечивают клеточный иммунитет . Различные разновидности Т-лимфоцитов выполняют разные функции. Так, Т-лимфоциты -киллеры (клетки-убийцы ) соединяются с чужеродными клетками и убивают их. В мембрану киллеров встроены рецепторные белки, которые представляют собой антитела, возможно, фиксированные иммуноглобулины. Именно эти рецепторы осуществляют контакт лимфоцитов с чужеродными антигенами и их обезвреживание. Этот процесс требует участия так называемых Т-хелперов (лимфоцитов-помощников ). Т-хелперы помогают также В-лимфоцитам синтезировать антитела. Третья группа Т-лимфоцитов – это так называемые Т-клетки иммунной памяти . Эти клетки, живущие более 10 лет, циркулируют в крови и после первого контакта с антигеном "запоминают" его на долгие годы. При повторном контакте с этим же антигеном клетки иммунной памяти его "узнают" и обеспечивают быструю его нейтрализацию. Четвертая разновидность Т-лимфоцитов – Т-супрес-соры , способны подавлять выработку антител В-лимфоцитами и активность других Т-лимфоцитов.

В-лимфоциты обеспечивают гуморальный иммунитет. При попадании в организм антигена В-лимфоциты превращаются сначала в плазмобласты , которые в результате ряда последовательных делений дают плазматические клетки . Цитоплазма плазматических клеток богата рибосомами, активно вырабатывающими антитела, или иммуноглобулины . В выработке антител участвуют Т-хелперы, однако, точный механизм их участия пока не известен. Плазматические клетки строго специфичны по отношению к определенным антигенам – каждая клетка синтезирует только один тип антител.

Антитела, или иммуноглобулины, относятся к сложным белкам – гликопротеидам. Они специфически связываются с чужеродными веществами – антигенами. По строению молекулы иммуноглобулины бывают мономерные и полимерные. Каждая молекула имеет в своих цепях постоянные (COОH-концевые) и вариабельные (меняющиеся) (NH 2 -концевые) части. Вариабельные части образуют активный центр (полость особой конфигурации, по размерам и структуре соответствующую антигену), который определяет способность антитела специфически связываться с антигеном. В результате этого связывания образуется прочный комплекс антиген-антитело.

Появившаяся во второй половине ХХ века болезнь СПИД (синдром приобретенного иммунодефицита) вызывается ретравирусом ВИЧ, который избирательно поражает в организме Т-лимфоциты-хелперы, в результате чего специфические механизмы иммунной системы перестают действовать. Больной становится практически беззащитным перед любой самой безобидной инфекцией. Кроме Т-хелперов, ВИЧ поражает моноциты, микрофаги и клетки ЦНС, имеющие на своей поверхности рецептор Т 4 , через который вирус проникает в клетку.

Иммунитет также подавляется под действием ионизирующего облучения.

РАЗДРАЖИМОСТЬ И ВОЗБУДИМОСТЬ КЛЕТКИ.

БИОЭЛЕКТРИЧЕСКИЕ ЯВЛЕНИЯ В СОСТОЯНИИ ПОКОЯ И

ДЕЯТЕЛЬНОСТИ КЛЕТКИ. ЗНАЧЕНИЕ БИОЭЛЕКТРИЧЕСКИХ ЯВЛЕНИЙ В ПРОЦЕССАХ ПЕРЕДАЧИ ИНФОРМАЦИИ В

ОРГАНИЗМЕ

Раздражимостью называется способность живых клеток, тканей или целого организма отвечать на внешние воздействия изменением своей структуры, а также возникновением, усилением или ослаблением своей деятельности. Эти внешние воздействия называют раздражителями , ответные реакции на них клеток, тканей и всего организма – биологическими реакциями. Сам процесс воздействия раздражителя называется раздражением .

По своей природе раздражители могут быть химическими, электрическими, механическими, температурными, радиационными, световыми, биологическими и др. По своему биологическому значению для каждой клетки все раздражители делятся на адекватные и неадекватные . Адекватными называются те раздражители, которые при минимальной силе раздражения вызывают возбуждение в данном виде клеток, выработавших в процессе эволюции специальную способность реагировать на эти раздражители. Чувствительность клетки к адекватным раздражителям очень велика. Все остальные раздражители называют неадекватными.

В той или иной степени способны отвечать на раздражение все живые клетки и ткани. Однако нервная, мышечная и железистая ткань в отличие от других способны осуществлять быстрые реакции на раздражения. Эти ткани получили название возбудимых тканей . К возбудимым клеткам относят и специализированные рецепторные клетки, например, палочки и колбочки сетчатки глаза.

Способность нервных, мышечных и железистых клеток и тканей, а также рецепторных клеток быстро отвечать на раздражение изменениями своих физиологических свойств и возникновением возбуждения называется возбудимостью . Возбуждение – это волнообразный процесс, который проявляется в специфической ответной реакции ткани (мышечная – сокращается, железистая – выделяет секрет, нервная – генерирует электрический импульс) и неспецифической (изменение t°, обмена веществ и др.). Обязательным признаком возбуждения является изменение электрического заряда мембраны клетки.

Минимальная сила раздражителя, необходимая для возникновения минимальной ответной реакции клетки и ткани, называется порогом раздражения . Он измеряется в различных физических величинах, которыми характеризуется величина раздражителя (в градусах, килограммах, децибеллах и т.д.). Минимальная сила раздражения, необходимая для возникновения возбуждения клетки и генерации потенциала действия, называется порогом возбуждения . Порог возбуждения измеряется в миллиВольтах.

Любая живая клетка покрыта полупроницаемой мембраной, через которую осуществляется пассивный и активный избирательный перенос положительно и отрицательно заряженных ионов. Благодаря этому переносу между наружной и внутренней поверхностью мембраны клетки существует электрическая разность потенциалов – мембранный потенциал . Существует три отличающихся друг от друга проявления мембранного потенциала – мембранный потенциал покоя, местный потенциал и потенциал действия.

Если на клетку не действуют внешние раздражители, то мембранный потенциал долго сохраняется постоянным. Мембранный потенциал такой покоящейся клетки называется мембранным потенциалом покоя . Для внутренней среды клетки потенциал покоя всегда отрицателен и равен для нервной и поперечно-полосатой мышечной ткани от -50 до -100 мВ, для эпителиальной и гладкомышечной ткани от -20 до -30 мВ.

Причиной возникновения потенциала покоя является разная концентрация катионов и анионов снаружи и внутри клетки и избирательная проницаемость для них клеточной мембраны. Цитоплазма покоящейся нервной и мышечной клетки содержит примерно в 20-100 раз больше катионов калия, в 5-15 раз меньше катионов натрия и в 20-100 раз меньше анионов хлора, чем внеклеточная жидкость.

В мембране клетки имеются специфические натриевые, калиевые, хлорные и кальциевые каналы , которые избирательно пропускают, соответственно, только Nа + , К + , С1 - и Са 2+ . Эти каналы обладают воротным механизмом и могут быть открытыми или закрытыми. В состоянии покоя практически все натриевые каналы мембраны клетки закрыты, а большинство калиевых – открыто. Всякий раз, когда ионы калия наталкиваются на открытый канал, они диффундируют через мембрану. Поскольку внутри клетки концентрация ионов К + значительно выше, то их выходит из клетки гораздо больше, чем входит, что увеличивает положительный заряд наружной поверхности мембраны. Этот выходящий поток ионов К + должен был бы вскоре выровнять осмотическое давление (или концентрацию) этого иона, но этому препятствует электрическая сила отталкивания положительных ионов К + от положительно заряженной наружной поверхности мембраны. Ионы К + будут выходить из клетки до тех пор, пока сила электрического отталкивания не станет равной силе осмотического давления К + . При таком уровне потенциала мембраны уравновесится выход и вход ионов К + через мембрану клетки.

Поскольку в состоянии покоя почти все натриевые каналы мембраны закрыты, то ионы Nа + поступают в клетку в незначительном количестве и поэтому не могут возместить потерю положительного заряда внутренней среды клетки, вызванную выходом ионов К + . Избыток ионов Nа + на наружной поверхности мембраны совместно с выходящими из клетки ионами К + создают положительный потенциал снаружи мембраны покоящейся клетки.

В состоянии покоя мембрана нервных клеток проницаема несколько хуже, а мышечных клеток проницаемость несколько лучше для анионов Cl - , чем для катионов К + . Анионы Cl - , которых больше вне клетки, диффундируют внутрь клетки и несут с собой отрицательный заряд. Уравниванию концентраций ионов Cl - препятствует сила электрического отталкивания одноименных зарядов.

Мембрана клетки практически непроницаема для крупных органических анионов, в частности молекул белков, анионов органических кислот. Поэтому они остаются внутри клетки и совместно с поступающими внутрь клетки ионами Cl - обеспечивают отрицательный потенциал на внутренней поверхности мембраны покоящейся клетки.

При действии на клетку различных раздражителей по силе примерно в 1,5-2 раза меньше порога раздражения мембранный потенциал покоя начинает уменьшаться, т.е. происходит деполяризация мембраны клетки. С увеличением силы раздражения деполяризация мембраны нарастает. Однако если сила раздражения не достигла порога, то прекращение раздражения приводит к быстрому восстановлению потенциала покоя. В мышечной и нервной тканях при подпороговом раздражении уменьшение потенциала мембраны ограничено небольшим участком в месте нанесения раздражения и получило название местного потенциала или локального ответа .

При достижении раздражения пороговой силы возникает быстрое кратковременное изменение величины и полярности заряда мембраны клетки, которое получило название потенциала действия (применяются также термины "волна возбуждения", для нервных клеток – "нервный импульс"). Потенциалы действия всегда возникают при деполяризации мембраны нервной и поперечно-полосатой мышечной клетки примерно до – 50 мВ.

Причиной возникновения местного потенциала, а затем и потенциала действия является раскрытие натриевых каналов и поступление ионов Nа + внутрь клетки. При нарастании силы раздражения до пороговой этот процесс идет медленно и возникает местный потенциал. При достижении критического уровня деполяризации мембраны (примерно -50 мВ) проницаемость натриевых каналов мембраны лавинообразно возрастает. Ионы Nа + поступают внутрь клетки, что приводит не только к быстрой нейтрализации отрицательного заряда у внутренней поверхности мембраны, но и к возникновению положительного заряда (инверсия потенциала).

Как только количество ионов Nа + снаружи и внутри клетки сравняется, направленный ток в клетку Nа + прекращается и инверсия заканчивается при величине примерно от +30 до +40 мВ (рисунок 1).

Рисунок 1 – Развитие потенциала действия в нейроне в ответ на раздражение:

1 – уровень потенциала покоя; 2 – местный потенциал; КУД – критический уровень деполяризации мембраны; 3 – пик потенциала действия; 4 – величина инверсии (овершут); 5 – реполяризация; 6 – следовой деполяризационный потенциал; 7 – следовой гиперполяризационный потенциал.

К этому моменту резко увеличивается проницаемость мембраны для ионов К + , которые в большом количестве выходят из клетки. В результате у внутренней поверхности мембраны вновь создается отрицательный заряд, а на наружной поверхности – положительный, т.е. происходит реполяризация мембраны . Быстрые изменения величины и полярности заряда мембраны получили название пика потенциала действия. Вслед за пиком потенциала действия наблюдаются деполяризационный и гиперполяризационный следовые потенциалы, обусловленные инерционностью процессов движения ионов Nа + и К + через клеточную мембрану. Длительность потенциала действия составляет около 1 мс в нервах, 10 мс в скелетной мышце и более 200 мс в миокарде сердца.

Поддержание разности концентраций ионов Nа + и К + между цитоплазмой клетки и внеклеточной жидкостью в состоянии покоя и восстановление этой разницы после раздражения клетки обеспечивается работой так называемого натрий-калиевого насоса мембраны . Натрий-калиевый насос осуществляет активный перенос ионов против градиентов их концентраций, непрерывно откачивая Nа + из клетки в обмен на К + . Насос работает за счет энергии АТФ. Для работы насоса необходимо наличие в клетке ионов Nа + , а во внеклеточной жидкости – ионов К + .

Распространение потенциала действия по ткани, в особенности нервного импульса по нервам, является самым быстрым и точно адресованным способом передачи информации в организме. Скорость передачи нервного импульса в быстропроводящих волокнах двигательных нервов (тип Аα )достигает 120 м/с. Другие способы передачи информации гораздо медлительнее: гуморальный не превышает 0,5 м/с (скорость тока крови в аорте), аксонный транспорт веществ от тела нейрона к окончаниям аксона не превышает 40 см в сутки.

Передача информации в организме путем проведения потенциалов действия осуществляется по мембране нервного волокна. При нанесении раздражения достаточной силы на нервное волокно в точке раздражения возникает зона возбуждения (рисунок 2). Эта зона имеет на внутренней поверхности мембраны положительный заряд, а на наружной – отрицательный. Соседние невозбужденные участки мембраны нервного волокна имеют обратное соотношение полярности зарядов. Между возбужденным и невозбужденными участками мембраны возникают электрические токи. Они получили название местных токов.

Эти токи раздражают соседние невозбужденные участки мембраны. В результате в них изменяется проницаемость ионных каналов, развивается деполяризация и возникает потенциал действия. Эти участки становятся возбужденными. Процесс повторяется и таким образом происходит распространение нервного импульса по нерву в обе стороны от первоначального места нанесения раздражения. Таков механизм проведения возбуждения по безмякотному нервному волокну, в котором оно проводится с небольшой скоростью, постепенно ослабевая.

В мякотных нервных волокнах потенциалы действия возникают только в перехватах Ранвье, где нет миелиновой оболочки, являющейся электрическим изолятором. В результате возбуждение в мякотном нервном волокне передается скачками, от одного перехвата Ранвье к другому. Скорость передачи возбуждения в нем выше, чем в безмякотном волокне, и передается оно практически без ослабления.

ЗНАЧЕНИЕ АНАЛИЗАТОРОВ ДЛЯ ВОСПРИЯТИЯ ЯВЛЕНИЙ ВНЕШНЕЙ И ВНУТРЕННЕЙ СРЕДЫ. ПОНЯТИЕ О РЕЦЕПТОРАХ,

ОРГАНАХ ЧУВСТВ, АНАЛИЗАТОРАХ И СЕНСОРНЫХ

СИСТЕМАХ. ОТДЕЛЫ АНАЛИЗАТОРОВ. ОБЩИЕ СВОЙСТВА АНАЛИЗАТОРОВ

Организм человека и животных может нормально функционировать только при постоянном получении информации о состоянии и изменениях внешней среды, в которой он находится, а также о состоянии внутренней среды, всех частей тела. Без информации, поступающей в мозг, не могут осуществляться простые и сложные рефлексы вплоть до психической деятельности человека.

Сложные акты поведения человека во внешней среде требуют постоянного анализа внешней ситуации, а также осведомленности нервных центров о состоянии внутренних органов. Специальные структуры нервной системы, обеспечивающие вход информации в мозг и анализ этой информации, И.II. Павлов назвал анализаторами .

С помощью анализаторов осуществляется познание окружающего мира. При раздражении рецепторов в коре больших полушарий возникают ощущения , которые отражают отдельные свойства предметов и явлений. На основе ощущений формируются понятия и представления , отражающие взаимосвязи и зависимости между этими предметами и явлениями, делаются выводы и заключения, осуществляются адекватное поведение во внешней среде и практическая деятельность человека.

Анализаторы при нормальном функционировании в пределах чувствительности своих рецепторов дают верное представление о внешней среде, что подтверждается практикой. Это дает возможность человеку познавать окружающий мир, достигать прогресса в областях знания, науки и техники.

Информация, поступающая от различных рецепторов в центральную нервную систему, необходима для поддержания деятельного состояния ЦНС и всего организма в целом. Искусственное выключение большинства органов чувств в специальных экспериментах на животных приводило к резкому снижению тонуса коры и сонному состоянию животного. Разбудить его можно было только путем воздействия на не выключенные органы чувств. Специальные эксперименты на людях, помещенных в камеры, исключающие поступление зрительных, слуховых и других раздражений, показали, что резкое снижение поступления сенсорной информации отрицательно сказывается на способности концентрировать внимание, логически мыслить, выполнять умственные задачи. В ряде случаев появлялись зрительные и слуховые галлюцинации.

Информация, передаваемая в ЦНС от рецепторов интероцептивного анализатора, расположенных во внутренних органах, служит основой процессов саморегуляции . Так, например, если изменяется давление крови, то в барорецепторах стенок сосудов возникает возбуждение. Оно передается в сосудодвигательный центр продолговатого мозга, импульсы от которого вызывают расширение сосудов и восстановление кровяного давления до нормальной величины.

Помимо первичного сбора информации об окружающей среде и внутреннем состоянии организма важной функцией анализаторов является информирование нервных центров о результатах рефлекторной деятельности, т.е. осуществление обратных связей . Например, для точного выполнения ответной двигательной реакции на какое-либо раздражение ЦНС должна получать информацию от двигательного и вестибулярного анализаторов о силе и длительности выполняемых сокращений мышц, о скорости и точности перемещения тела, положении тела в пространстве, об изменениях темпа движений и т.д. Без этой информации невозможно формирование и совершенствование двигательных навыков, в том числе трудовых и спортивных.

Восприятие любой информации о внешней и внутренней среде начинается с раздражения рецепторов. Рецептор – это нервное окончание или специализированная клетка, которая способна воспринимать раздражение и преобразовывать энергию раздражения в нервный импульс. Рецепторы подразделяют на экстерорецепторы , воспринимающие раздражения из внешней среды, и интерорецепторы , сигнализирующие о состоянии внутренних органов. Разновидностью интерорецепторов являются проприорецепторы , информирующие о состоянии и деятельности опорно-двигательного аппарата. В зависимости от характера раздражителей, к которым рецептор обладает избирательной чувствительностью, рецепторы подразделяют на несколько групп: механорецепторы , терморецепторы , фоторецепторы , хеморецепторы , болевые рецепторы и др.

Трансформирование энергии раздражителя в процесс возбуждения, или нервный импульс, происходит за счет обмена веществ самих рецепторов. Раздражитель, действуя на рецептор, вызывает деполяризацию его мембраны и возникновение рецепторного, или генераторного потенциала , который сходен по своим свойствам с местным потенциалом. Когда рецепторный потенциал достигает величины критического потенциала, он вызывает возникновение афферентного импульса в нервном волокне, идущем от рецептора.

Более широким понятием, чем рецептор, является понятие орган чувств , под которым понимают образование, включающее рецепторы, а также другие клетки и ткани, способствующие лучшему восприятию рецепторами какого-то определенного раздражения. Например, рецепторы зрения (фоторецепторы) – это палочки и колбочки сетчатки глаза. Вместе с преломляющей системой, оболочками, мышцами, кровеносными сосудами глазного яблока фоторецепторы составляют орган чувств – глаз .

Однако для возникновения ощущения одного органа чувств недостаточно. Необходимо, чтобы возбуждение от органа чувств было передано по афферентным путям в ЦНС в соответствующие проекционные зоны в коре больших полушарий. Это было установлено русским ученым И.П, Павловым, который ввел в физиологию понятие анализатор , объединяющее все анатомические образования, в результате деятельности которых возникает ощущение. Анализатор состоит из периферического отдела (соответствующего органа чувств), проводникового отдела (афферентных проводящих путей) и коркового , или центрального, отдела (определенного участка в коре больших полушарий). Например, периферический отдел зрительного анализатора представлен глазом, проводниковый отдел – это зрительный нерв, корковый отдел – зрительная зона коры больших полушарий.

Следует отметить, что в настоящее время в термин орган чувств часто вкладывают то же понятие, что и в анализатор.

Дальнейшее изучение механизмов восприятия и анализа информации, а также реакции на нее организма привело к появлению более общего, чем анализатор, понятия сенсорные системы . Сенсорная система включает в себя не только сложную многоуровневую систему передачи информации от рецепторов к коре больших полушарий и анализа ее, что И.П. Павлов назвал анализатором, но и включает процессы синтеза различной информации в коре и регулирующие влияния коры к нижележащим нервным центрам и рецепторам. Сенсорные системы имеют сложную структуру. Возбуждение от рецепторов проводится в кору больших полушарий по так называемым специфическому и неспецифическому путям.

Специфический пу ть включает в себя: 1) рецептор; 2) первый чувствительный нейрон, расположенный всегда вне ЦНС в спинномозговых ганглиях или в ганглиях черепномозговых нервов; 3) второй нейрон, расположенный в спинном или продолговатом или среднем мозге; 4) третий нейрон, находящийся в зрительных буграх промежуточного мозга; 5) четвертый нейрон, расположенный в проекционной зоне данного анализатора в коре больших полушарий.

Со вторых нейронов специфического пути, т.е. в спинном, продолговатом и среднем мозге происходит также передача сенсорного возбуждения на пути в другие отделы головного мозга, в том числе в ретикулярную формацию . Из ретикулярной формации возбуждение может направляться по так называемым неспецифическим путям во все отделы коры больших полушарий .

Анализаторам характерны следующие общие свойства. I) Высокая чувствительность к адекватным раздражителям . Например, в ясную темную ночь человеческий глаз может различить свет свечи на расстоянии до 20 км. 2) Адаптация анализаторов , т.е. свойство приспосабливаться к постоянной интенсивности длительно действующего раздражителя. При действии сильного раздражителя возбудимость анализатора уменьшается и пороги раздражения возрастают, при действии слабого раздражителя возбудимость анализатора увеличивается и пороги раздражения снижаются. Не все анализаторы обладают одинаковой способностью к адаптации. Хорошо адаптируются обонятельный, температурный, тактильный анализаторы, очень мало адаптируются вестибулярный, двигательный и болевой анализаторы.

Скорость и степень адаптации у разных анализаторов к разным раздражителям тоже различна. Например, темновая адаптация при переходе от яркого света к темноте развивается в течение часа, а световая адаптация при переходе от темноты к свету наступает в течение минуты. Физиологическое значение адаптации заключается в установлении оптимального количества сигналов, поступающих в ЦНС, и ограничении поступления импульсов, не несущих новую информацию.

3) Иррадиация и индукция в нейронах анализатора . Иррадиация - это распространение возбуждения на другие нейроны в корковом отделе того же анализатора. Ее можно наблюдать при рассматривании квадратов одинакового размера на разном фоне. Так, белый квадрат на черном фоне кажется больше, чем таких же размеров черный квадрат на белом фоне.

Индукция бывает одновременная и последовательная.Одновременная индукция является процессом, противоположным иррадиации. Суть ее в том, что одновременно с развитием возбуждения в одних нейронах анализатора в соседних вызывается торможение. Последовательная индукция состоит в том, что после прекращения возбуждения в нервных центрах анализатора развивается процесс торможения, а после прекращения торможения – процесс возбуждения. Процессы одновременной и последовательной индукции лежат в основе явлений контраста. Например, кислое после сладкого кажется еще более кислым; теплая вода после холодной кажется горячей и т.д.

4) Следовые процессы в анализаторах . После прекращения раздражения рецепторов физиологические процессы в анализаторе еще длятся некоторое время в виде положительных и отрицательных следовых явлений . Положительные следовые процессы являются как бы кратковременным продолжением процессов, происходивших в анализаторах при действии раздражителя. Т.е. ощущение (зрительное, слуховое, вкусовое и т.д.) длится еще некоторое время после прекращения действия раздражителя на рецепторы. Благодаря положительным следовым явлениям возможно слитное восприятие раздельных кадров в кинофильме.

5) Взаимодействие анализаторов . Все анализаторы функционируют не изолированно, а во взаимодействии друг с другом. Их взаимодействие может усиливать или наоборот ослаблять ощущения. Например, звуковые раздражители воспринимаются легче при сочетании их со световыми, на чем основана светомузыка.

СИСТЕМНЫЙ ПРИНЦИП УПРАВЛЕНИЯ

ФИЗИОЛОГИЧЕСКИМИ ФУНКЦИЯМИ КАК ОСНОВА СЛОЖНОГО

ПОВЕДЕНИЯ. ПОНЯТИЕ О ФУНКЦИОНАЛЬНОЙ СИСТЕМЕ

ПОВЕДЕНЧЕСКОГО АКТА (П.К. АНОХИН). СОСТАВНЫЕ ЭЛЕМЕНТЫ ФУНКЦИОНАЛЬНОЙ СИСТЕМЫ

Организм – это самостоятельно существующая единица органического мира. Он представляет собой саморегулирующуюся систему, реагирующую как единое целое на различные изменения внешней среды. В организме частные физиологические процессы подчинены закономерностям работы сложной целостной системы.

Например, изменение обмена веществ и функций любой клетки, ткани, органа и системы органов вызывает изменения обмена веществ других клеток, тканей, органов и систем органов. Поэтому управление процессами жизнедеятельности в организме строится по принципу системной иерархичности, т.е. элементарные процессы подчинены более сложным.

Ведущее значение в физиологических механизмах сложных поведенческих актов принадлежит нервной системе . ЦНС регулирует и координирует физиологические функции, определяя их ритм и общую направленность. В свою очередь, частные формы физиологических функций благодаря обратным связям оказывают влияние на высший управляющий аппарат. Такая форма контроля и взаимного влияния физиологических функций лежит в основе системного управления в целостном организме.

П.К. Анохин первый обратил внимание на то, что системы в живом организме не просто анатомически соединяют входящие в них отдельные элементы, но и объединяют их для осуществления отдельных жизненно важных функций организма. Осуществление любого психического или физиологического процесса связано с образованием в организме функциональных систем, обеспечивающих достижение нужных результатов и обусловливающих целенаправленное поведение.

Под функциональной системой П.K. Анохин понимал временное саморегулирующееся объединение рецепторов, различных мозговых структур и исполнительных органов, взаимодействующих совместно с целью достижения приспособительных полезных для организма результатов.

В отличие от традиционных анатомо-физиологических систем, которые состоят из определенного постоянного набора органов, функциональные системы производят избирательное объединение различных органов в разных комбинациях из разных анатомических систем для достижения полезных для организма приспособительных результатов. Один и тот же орган, включенный в разные функциональные системы, может выполнять различные функции.

Функциональная система целостного поведенческого акта (рисунок 3) включает в себя следующие механизмы: I) афферентный синтез; 2) принятие решения; 3) акцептор результатов действия и эфферентная программа действия; 4) выполнение действия; 5) получение результатов действия и сравнение их на основе обратной афферентации с программой действия.

Стадия афферентного синтеза складывается из мотивационного возбуждения, обстановочной афферентации, использования аппарата памяти, пусковой афферентации.

Работа функциональной системы направлена на получение полезного приспособительного результата для удовлетворения возникшей биологической или социальной потребности. Вызвав активность в определенных структурах мозга, потребность приводит к возникновению мотивации. В организм постоянно поступает много разнообразной информации и одновременно может существовать несколько мотиваций. В каждый момент времени мотивация, в основе которой лежит наиболее важная потребность, становится доминирующей. Доминирующее мотивационное возбуждение определяет все последующие этапы мозговой деятельности по формированию поведенческих программ.

Для правильного программирования дальнейшего поведения организму необходимо оценить окружающую обстановку и свое положение в ней. Это достигается благодаря обстановочной афферентации , т.е. поступлению от рецепторов потока импульсов, несущих информацию об условиях, в которых предполагается осуществить поведенческий акт, направленный на удовлетворение возникшей потребности.

Обязательным компонентом, который неоднократно используется в функциональной системе, является нейрофизиологический аппарат памяти . Благодаря памяти, обстановочная афферентация сравнивается с теми условиями в прошлом, при которых была успешной деятельность, которую организму предстоит совершить.


Афферентный


Рисунок 3 – Упрощенная схема поведенческого акта с основными механизмами функциональной системы:

ОА – обстановочная афферентация; ПA – пусковая афферентация; MB – мотивационное возбуждение; ОС – обратные связи.

Если окружающая обстановка и состояние организма благоприятствуют предполагаемому поведенческому акту, то информация, поступающая от рецепторов, становится пусковой (пусковая афферентация ) для принятия решения о выполнении действий для удовлетворения потребности.

На основе афферентного синтеза осуществляется принятие решения . Извлекая из памяти информацию о собственном или чужом опыте по удовлетворению потребности в аналогичной обстановке, мозг выбирает один из многих способов для достижения поставленной цели. При этом избирательно возбуждаются нервные центры, которые обеспечивают осуществление выбранной поведенческой реакции. Деятельность нервных структур, мешающих выполнению данной реакции, тормозится.

Вслед за принятием решения формируется специальный аппарат прогнозирования будущих результатов – акцептор результатов действия и одновременно вырабатывается эфферентная программа действия . Акцептор результатов действия представляет собой нейронную модель предполагаемого результата, к которому должно привести данное действие. Предвидение будущих результатов происходит благодаря последовательному возбуждению корково-подкорковых структур мозга, которое опережает реальные события и возникает еще до поступления афферентных сигналов от рабочего органа (обратных связей) о выполнении действия. Информация о последовательности возбуждения нервных центров хранится, вероятно, в долговременной памяти.

Эфферентная программа действия представляет собой определенную последовательность набора нервных команд, поступающих на исполнительные органы – эффекторы. В каждом конкретном случае это могут быть различные комбинации органов из разных анатомических систем организма. Но они объединяются нервными и эндокринными влияниями и некоторое время функционируют взаимозависимо и совместно для достижения полезного приспособительного результата. Нередко разные функциональные системы для достижения различных приспособительных результатов могут использовать одни и те же органы. Например, сердце является необходимым компонентом и в функциональной системе для поддержания постоянного уровня кровяного давления, и в функциональных системах по обеспечению газообмена, терморегуляции и др.

Благодаря акцептору результатов действия осуществляется быстрое включение согласно с программой исполнительных органов функциональной системы и происходит выполнение действия.

Осуществление действия приводит к реальному результату, информация о котором с помощью обратной афферентации (обратных связей) поступает в акцептор действия, где сравнивается с запрограммированным результатом. Если полученный эффект соответствует запрограммированному, то человек испытывает положительные эмоции. Программа, приводящая к успешному выполнению поведенческого акта и полезному приспособительному результату, закрепляется в долгосрочной памяти, а сформировавшаяся функциональная система перестает существовать, т.к. произошло удовлетворение потребности и соответствующая мотивация перестает быть доминирующей.

При отсутствии ожидаемого результата возникают отрицательные эмоции и может произойти один из вариантов: 1) повторная попытка выполнения тех же рефлекторных реакций по той же программе; 2) при стойкой мотивации происходит перестройка программы действия, вносятся поправки в его выполнение; 3) при нестойкой мотивации отсутствие ожидаемого результата может привести к изменению самой мотивации или к ее исчезновению.

Таким образок, сложные поведенческие акты организма строятся не по типу раздражение рецептора – ответная реакция эффектора, а по принципу рефлекторных кольцевых взаимодействий, которые является одним из основных механизмов деятельности функциональных систем.

Можно привести следующий пример образования и деятельности функциональной системы в организации поведения в повседневной жизни. Приближение праздника 8-е Марта вызывает социальную потребность у подростка поздравить свою маму, в результате чего возникает доминирующее мотивационное возбуждение. Сын задумывается над тем, какой подарок сделать маме и вспоминает, что ей нравятся цветы гладиолусы, роман М. Митчел "Унесенные ветром", повести В. Быкова и французские духи.

Обстановочная афферентация показывает, что в начале марта цветущих гладиолусов не найти, а духи дорогие и на них у подростка не хватает денег. Доступность книг по цене делает эту афферентную информацию пусковой. Принимается решение – купить какую-нибудь из нравящихся маме книг, желательно роман «Унесенные ветром», т.к. она давно уже хотела его иметь. Школьник вспоминает, что нужную книгу он недавно видел в двух магазинах.

Составляется программа выполнения – посмотреть и купить роман в ближайшем книжном магазине. Однако в магазинах подросток узнает, что необходимый роман уже раскупили. Эта информация является отрицательной обратной связью. Она поступает в акцептор результатов действия.

Поскольку полученный результат (роман не куплен) не совпадает с запрограммированным, акцептор результатов действия вносит поправку в программу действий: съездить еще на книжный рынок и если не будет романа "Унесенные ветром", то купить книгу повестей В. Быкова. На книжном рынке подросток находит повести В. Быкова и покупает их. Полезный результат достигнут. Потребность школьника удовлетворяется, мотивация угасает и данная функциональная система перестает существовать.

ПОНЯТИЕ ОБ АДАПТАЦИИ. УЧЕНИЕ ОБ ОБЩЕМ

АДАПТАЦИОННОМ СИНДРОМЕ. СТРЕСС. РОЛЬ СИСТЕМЫ

ГИПОТАЛАМУС – ГИПОФИЗ – НАДПОЧЕЧНИКИ В АДАПТАЦИИ

В общебиологическом смысле адаптация – это совокупность врожденных и приобретенных анатомо-морфологических, физиологических, поведенческих и других особенностей организма, обеспечивающая его приспособление к условиям внешней среды и создающая возможность специфического образа жизнедеятельности. Адаптация поддерживает гомеостаз и возникает в результате процессов, протекающих на молекулярном, клеточном, органном, системном и организменном уровнях.

Ч. Дарвин показал, что адаптационные приспособления закрепляются в результате действия естественного отбора. В результате длительной эволюции и онтогенеза организмы адаптированы к своим адекватным условиям обитания. Например, рыбы приспособлены к жизни в воде, птицы – к полету и т.д. Приспособление к периодическому колебанию таких адекватных условий происходит в основном с помощью готовых специфических адаптивных механизмов . Различают общие адаптации и частные адаптации (специализации). К одним факторам среды организмы могут достигать полной, к другим – только частичной адаптации.

На первом этапе адаптации к колебаниям адекватных условий среды активируется условнорефлекторная деятельность организма, В дальнейшем, несмотря на повторные воздействия раздражителей, в процессе адаптации происходит угасание ориентировочной реакции и "привыкание" к действию раздражителя. В этом случае термин "адаптация" применяется в более узком смысле и обозначает снижение чувствительности рецепторов, а также приспособление центрального отдела соответствующего анализатора к постоянно действующему адекватному раздражителю. Адаптация рецепторов отличается от их утомления тем, что она быстро возникает после начала раздражения. Когда же действие раздражителя прекращается, то адаптация довольно быстро исчезает и чувствительность рецепторов повышается.

При выраженных изменениях окружающей среды возникают неадекватные условия для жизнедеятельности организма. Это включает в действие неспецифические адаптивные механизмы. В 1936 году канадский ученый Г. Селье в опытах на животных установил, что при действии на организм сильных и продолжительных раздражителей возникает комплекс неспецифических защитных реакций. Г. Селье назвал этот комплекс общим адаптационным синдромом . Состояние организма в период воздействия вредных факторов он назвал стрессом (от англ. стресс – напряжение), а факторы, вызывающие состояние стресса – стрессорами.

Каждый стрессор вызывает в организме характерные изменения. Так, например, вирус гриппа приводит к специфическому заболеванию – гриппу. Но наряду со специфическими изменениями в организме каждый стрессор вызывает ряд неспецифических, присущих всем видам стресса, стереотипных ответных реакций. Этот комплекс реакций, направленных на мобилизацию защитных сил организма, на сохранение его жизни, представляет собой общий адаптационный синдром. Он является механизмом общей адаптации организма.

В результате общего адаптационного синдрома обеспечивается : 1) мобилизация энергетических ресурсов организма и энергетическое обеспечение функций; 2) мобилизация пластического резерва организма и синтез ферментов и белков, необходимых для защиты организма от стрессора; 3) мобилизация защитных способностей организма.

Важной стороной механизма общей адаптации является то, что в результате приспособительного синтеза белков, происходит переход в долговременную адаптацию , в основе которой лежит изменение и совершенствование клеточных структур. Примером перехода краткосрочных адаптационных реакций в долговременную адаптацию является физическая тренировка, которая сопровождается повышением функциональных возможностей организма.

Развитие общего адаптационного синдрома невозможно без участия гипофиза и коры надпочечников . При их удалении у животных этот синдром не развивается, и они быстро гибнут под воздействием стрессора.

Г. Селье выделил три стадии в развитии общего адаптационного синдрома: стадию тревоги, стадию резистентности (устойчивости), стадию истощения.

Стадия тревоги начинается с момента начала действия на организм сильного раздражителя – стрессора. Стрессор вызывает повышение функциональной активности гипоталамуса , которое может осуществляться разными способами. Во-первых, рефлекторным путем , т.к. многие стрессовые раздражители, воздействуя на экстерорецепторы и интерорецепторы, вызывают поток импульсов от них к гипоталамусу. Во-вторых, большинство стрессоров вызывают возбуждение симпатического отдела нервной системы и усиление секреции адреналина мозговым веществом надпочечников. Адреналин, поступая с кровью в гипоталамус, значительно усиливает его активность. В-третьих, активирование гипоталамуса может быть вызвано также гуморальным путем в результате непосредственного воздействия продуктов обмена веществ и распада тканей, которые могут появиться в циркулирующей крови под действием сильного стрессора. В-четвертых, повышение функции гипоталамуса может возникнуть в результате воздействия импульсов, поступающих из коры больших полушарий при психическом стрессе.

Повышение функциональной активности гипоталамуса приводит к увеличению выработки в нем кортиколиберина , который поступает в переднюю долю гипофиза и там способствует повышению образования адренокортикотропного гормона (АКТГ ). АКТГ с током крови поступает в кору надпочечников и вызывает усиление секреции глюкокортикоидов . Глюкокортикоиды обладают противовоспалительным и противоаллергическим действием, активируют синтез многих ферментов, повышают проницаемость клеточных мембран для воды и ионов, повышают возбудимость ЦНС.

Глюкокортикоиды оказывают сильное воздействие на обмен белков, жиров и углеводов. Они способствуют распаду белков до аминокислот, что увеличивает количество исходного "строительного" материала для синтеза других белков и ферментов, необходимых в условиях стресса. Кроме того, под действием глюкокортикоидов в печени происходит образование углеводов из остатков аминокислот. Глюкокортикоиды усиливают мобилизацию жира из жировых депо и использование его в процессах энергетического обмена. Под влиянием глюкокортикоидов увеличивается запасы гликогена в печени и концентрация глюкозы в крови.

В результате такого многостороннего влияния глюкокортикоидов на обмен веществ улучшается энергетическое обеспечение физиологических функций и повышается устойчивость организма к стрессовым факторам.

Вторая стадия – стадия резистентности (устойчивости), характеризуется увеличением активности передней доли гипофиза и надпочечников, повышенной секрецией АКТГ и глюкокортикоидов. Увеличенное содержание глюкокортикоидов в крови повышает устойчивость организма к действию стрессора и общее состояние организма нормализуется, т.е. организм адаптируется к действию стрессора.

Однако всякое приспособление имеет свои границы. При длительном или слишком частом повторении воздействия сильного стрессора или при одновременном действии на организм нескольких стрессоров стадия резистентности переходит в третью стадию – стадию истощения . В эту стадию кора надпочечников не в состоянии вырабатывать еще большее количество глюкокортикоидов, названных Г. Селье адаптивными гормонами. Поэтому защитные силы организма и его сопротивление уже не могут полностью противостоять действию стрессоров. Состояние организма ухудшается, может наступить его заболевание и смерть.

Глюкокортикоиды играют также важную роль в адаптации организма к мышечным нагрузкам. При увеличении физической работы повышается активность коры надпочечников и содержание глюкокортикоидов в крови увеличивается. Это приводит к мобилизации энергетических ресурсов организма и он способен достаточно долго без ущерба для себя выполнять данную физическую или психическую нагрузку. Однако при длительных утомительных нагрузках вслед за первоначальным усилением происходит уменьшение выработки глюкокортикоидов. Энергетическое обеспечение работа становится недостаточным и организм снижает ее интенсивность или совсем прекращает. В противном случае наступает переутомление и истощение организма, что может стать причиной заболеваний.

ГУМОРАЛЬНАЯ РЕГУЛЯЦИЯ ФУНКЦИЙ. ФАКТОРЫ

ГУМОРАЛЬНОЙ РЕГУЛЯЦИИ. ПОНЯТИЕ О ГОРМОНАХ И ИХ

СВОЙСТВАХ. ВЗАИМОСВЯЗЬ НЕРВНОЙ И ГУМОРАЛЬНОЙ

РЕГУЛЯЦИИ ФУНКЦИЙ

Различают два основных механизма регуляции функций – нервный и гуморальный, которые взаимосвязаны и образуют единую нейрогуморальную регуляцию.

Гуморальный (от латинского humor – жидкость), или химический механизм регуляции является филогенетически более древним. Он осуществляется за счет химических веществ, находящихся в циркулирующих в организме жидкостях, т.е. в крови, лимфе и тканевой жидкости. Факторами гуморальной регуляции функций могут быть: I) физиологически активные вещества – гормоны , вырабатываемые эндокринными железами и некоторыми другими органами и клетками организма (например, гормон адреналин вырабатывается эндокринной железой – мозговым веществом надпочечников, а также хромафинными клетками, находящимися в нервных узлах, стенке кровеносных сосудов и других органах); 2) некоторые специфические продукты обмена веществ клеток, в том числе и медиаторы (ацетилхолин, норадреналин и др.); 3) некоторые неспецифические продукты обмена веществ клеток (например, СО 2 оказывает возбуждающее действие на клетки дыхательного центра продолговатого мозга); 4) некоторые вещества , поступающие вместе с продуктами питания , при дыхании , через кожу (например, никотин, вдыхаемый с табачным дымом, снижает возбудимость нервных клеток и оказывает отрицательное воздействие на деятельность многих клеток и тканей).

Важнейшим видом гуморальной регуляции функций является гормональная регуляция , осуществляемая посредством гормонов , которые вырабатываются эндокринными железами. Кроме того, гормоноподобные вещества выделяются и некоторыми другими органами и клетками организма, выполняющими, помимо эндокринной, другую специализированную функцию (почки, плацента, клетки слизистой оболочки пищеварительного тракта и др.). Эти вещества получили название тканевых гормонов. Эндокринные железы (от греч. endon – внутри, crino – выделяю) не имеют выводных протоков и выделяют гормоны во внутреннюю среду организма, вследствие чего они получили второе название – железы внутренней секреции.

К эндокринным железам человека и высших животных относятся: гипофиз (передняя, промежуточная и задняя доли), щитовидная железа, паращитовидные железы, надпочечники (мозговое и корковое вещество), поджелудочная железа, половые железы (яичники и семенники), эпифиз, вилочковая железа. Половые железы и поджелудочная железа осуществляют наряду с внутрисекреторной и внешнесекреторную функцию, т.е. являются железами смешанной секреции. Так, половые железы вырабатывают не только половые гормоны, но и половые клетки – яйцеклетки и сперматозоиды, а часть клеток поджелудочной железы вырабатывает поджелудочный сок, который выделяется по протоку в 12-перстную кишку, где участвует в пищеварении.

Эндокринные железы осуществляют гуморальную регуляцию посредством вырабатываемых ими гормонов. Термин гормон (от греч. hormao – привожу в движение, возбуждаю) был введен В. Бейлисом и Е. Старлингом. По химическому строению гормоны высших животных и человека можно разделить на три основные группы: 1) белки и пептиды ; 2) производные аминокислот ; 3) стероиды . Биосинтез гормонов запрограммирован в генетическом аппарате специализированных эндокринных клеток.

По своему функциональному действию гормоны подразделяются на эффекторные , которые оказывают влияние непосредственно на орган-мишень, и тропные , основной функцией которых является регуляция синтеза и выделения эффекторных гормонов. Кроме того, нейронами гипоталамуса вырабатываются нейрогормоны, одни из которых – либерины стимулируют секрецию гормонов передней доли гипофиза, а другие тормозят этот процесс – статины .

Гормоны оказывают большое регулирующее влияние на различные функции организма. Выделяют три основные функции гормонов: 1) регуляция обмена веществ , в результате которой обеспечивается адаптация организма к условиям существования и поддерживается гомеостаз; 2) обеспечение развития организма , т.к. гормоны влияют на размножение организма, рост и дифференцировку клеток и тканей; 3) коррекция физиологических процессов в организме, т.е. гормоны могут вызвать, усилить или ослабить работу каких-то органов к осуществление физиологических реакций, что также обеспечивает адаптацию и гомеостаз организма.

Действие гормонов на клетки-мишени осуществляется путем влияния на активность ферментов , на проницаемость клеточных мембран и на генетический аппарат клетки . Механизм действия стероидных гормонов отличается от механизма действия гормонов белково-пептиднсй и аминокислотной групп. Гормоны белково-пептидной и аминокислотной групп не проникают внутрь клетки, а присоединяются на ее поверхности к специфическим рецепторам клеточной мембраны. Рецептор связывает фермент аденилатциклазу и она находится в неактивной форме. Гормон, действуя на рецептор, активирует аденилатциклазу, которая расщепляет АТФ с образованием циклического аденозинмонофосфата (цАМФ). Включаясь в сложную цепь реакций, цАМФ вызывает активацию определенных ферментов, что и обусловливает конечный эффект действия гормона.

Стероидные гормоны имеют относительно небольшие размеры мо-лекул и могут проникать через клеточную мембрану. В цитоплазме гормон взаимодействует со специфическим веществом, являющимся для него рецептором. Гормон-рецепторный комплекс транспортируется в ядро клетки, где обратимо взаимодействует с ДНК. В результате этого взаимодействия активируются определенные гены, на которых образуется информационная РНК. Информационная РНК поступает в рибосому, где происходит синтез фермента. Образовавшийся фермент катализирует определенные биохимические реакции, что влияет на физиологические функции клеток, тканей и органов. В связи с тем, что стероидные гормоны не активируют готовые ферменты, а вызывают синтез новых молекул, действие стероидных гормонов проявляется медленнее, но длится дольше, чем влияние гормонов белково-пептидной и аминокислотной групп.

Гормоны обладают рядом характерных свойств:

1. Высокая биологическая активность . Это означает, что гормоны в очень малых концентрациях могут вызывать значительнее изменения физиологических функций. Так, 1 г адреналина достаточно, чтобы усилить работу изолированных сердец 10 миллионов лягушек, 1 г инсулина достаточно, чтобы понизить уровень сахара у 125000 кроликов. Гормоны транспортируются кровью не только в свободном, но и в связанном виде с белками плазмы крови или ее форменными элементами. Поэтому активность действия гормона в этом случае зависит не только от концентрации его в крови, но и от скорости отщепления его от транспортирующих белков и форменных элементов.

2. Специфичность действия . Каждой гормон имеет свою определенную химическую структуру. Поэтому в организме гормон, хотя и достигает с током крови всех органов и тканей, но действует только на те клетки, ткани и органы, которые обладают специфическими рецепторами, способными взаимодействовать с гормоном. Такие клетки, ткани и органы получили название клеток-мишеней, тканей-мишеней, органов-мишеней.

3. Дистантность действия . Гормоны, за исключением тканевых гормонов, переносятся кровью далеко от места их образования и оказывают действие на отдаленные органы и ткани.

4. Гормоны стероидной группы и в меньшей степени гормоны щитовидной железы сравнительно легко проникают через мембраны клеток.

5. Гормоны сравнительно быстро разрушаются в тканях и особенно в печени.

6. Гормоны стероидной и аминокислотной групп не имеют видовой специфичности и поэтому возможно применение для лечения человека гормональных препаратов, полученных от животных.

Интенсивность синтеза и выделения гормона железой регулируется в соответствии с величиной потребности организма в данном гормоне. Как только изменения, вызываемые каким-либо гормоном, достигают оптимальной величины, образование и выделение этого гормона уменьшаются. Регуляция уровня выделения гормонов осуществляется несколькими способами: 1) прямое влияние на клетки железы того вещества, уровень которого контролируется данным гормоном (например, при повышении концентрации глюкозы в крови, протекающей через поджелудочную железу, увеличивается секреция инсулина, снижающего уровень глюкозы); 2) гормоны, вырабатываемые одними железами, оказывают влияние на выделение гормонов другими железами (например, тиреотропный гормон гипофиза стимулирует секрецию гормонов щитовидной железой); 3) нервная регуляция образования гормонов осуществляется главным образом через гипоталамус путем изменения уровня секреции нейронами гипоталамуса либеринов и статинов, которые поступают в переднюю долю гипофиза и влияют там на выделение гормонов; 4) выработка гормонов клетками мозгового вещества надпочечников и эпифиза увеличивается при непосредственном поступлении к ним нервных импульсов. Нервные волокна, иннервирующие другие эндокринные железы регулируют в основном тонус кровеносных сосудов и кровоснабжение железы, тем самым влияя и на секрецию гормонов.

Разные гормоны, вырабатываемые разными железами, могут взаимодействовать между собой. Это взаимодействие может выражаться в синергизме действия, антагонизме действия и в позволяющем действии гормонов. Примером синергического, или однонаправленного, влияния можно привести действие адреналина (гормон мозгового вещества надпочечников) и глюкагона (гормон поджелудочной железы), которые активируют распад гликогена печени до глюкозы и повышают уровень глюкозы в крови. Пример антагонизма действия гормонов: адреналин повышает уровень глюкозы в крови, а инсулин (гормон поджелудочной железы) снижает уровень глюкозы.

Позволяющее действие гормонов выражается в том, что гормон, сам не влияющий на данный физиологический показатель, создает условие для лучшего действия какого-то другого гормона. Например, сами глюкокортикоиды (гормоны коры надпочечников) не влияют на тонус мускулатуры сосудов, но повышают их чувствительность к адреналину.

Деятельностью желез внутренней секреции управляет нервная система, которой принадлежит ведущая роль в нейрогуморальной регуляции функций. Взаимосвязь нервной и гуморальной регуляции особенно четко проявляется во взаимодействии отдела головного мозга – гипоталамуса и ведущей эндокринной железы – гипофиза. Одной из главнейших функций гипоталамуса является регуляция деятельности гипофиза . Различают две системы регуляции: 1) гипоталамо-аденогипофизарная , состоящая из некоторых ядер средней группы гипоталамуса, функционально связанных с аденогипофизом; 2) гипоталамо-нейрогипофизарная , состоящая из некоторых ядер передней группы гипоталамуса, связанных с задней долей гипофиза, т.е. нейрогипофизом.

Обнаружено, что секреция гормонов аденогипофиза регулируется нейрогормонами гипоталамуса, которые являются как бы гормонами гормонов. Нейрогормоны вырабатываются нейросекреторными клетками, входящими в среднюю группу ядер гипоталамуса. Нейрогормоны секретируются двух видов: 1) либерины , или рилизинг-факторы, усиливающие секрецию гормонов аденогипофизом; 2) статины (ингибиторы), оказывающие тормозящее действие на выделение некоторых гормонов аденогипофизом. Образующиеся в нейросекреторных клетках нейрогормоны поступают по аксонам этих клеток в кровь и с током крови по кровеносным сосудам транспортируются из гипоталамуса в аденогипофиз, где воздействуют на клетки, секретирующие тот или иной гормон. Секреция самих либеринов и статинов регулируется по принципу отрицательной обратной связи .

Гипоталамо-нейрогипофизарная система начинается от нейросекреторных клеток некоторых ядер передней группы ядер гипоталамуса. В этих клетках образуются гормоны окситоцин и вазопрессин (антидиуретический гормон), которые транспортируются по их длинным аксонам в нейрогипофиз, где и поступают в кровь.

Благодаря связям гипоталамуса с гипофизом создаётся единая нейрогуморальная регуляция функций .

СТРУКТУРНАЯ ОРГАНИЗАЦИЯ МЫШЦ. СТРОЕНИЕ

МЫШЕЧНОГО ВОЛОКНА. САРКОПЛАЗМАТИЧЕСКИЙ

РЕТИКУЛУМ. МИОФИБРИЛЛЫ. МЕХАНИЗМ МЫШЕЧНОГО

СОКРАЩЕНИЯ. СОКРАТИТЕЛЬНЫЕ БЕЛКИ. ЭНЕРГЕТИКА

МЫШЕЧНОГО СОКРАЩЕНИЯ

Структурной единицей скелетных мышц является поперечнополосатое мышечное волокно, имеющее диаметр от 10 до 100 мкм и длину 2-3 см. Каждое волокно – это многоядерное образование, возникающее в раннем онтогенезе из слияния клеток-миобластов. Снаружи волокно покрыто оболочкой – сарколеммой . Внутри находится цитоплазма, называемая саркоплазмой. В саркоплазме расположены саркоплазматический ретикулум и сократительный аппарат мышечного волокна – миофибриллы . Миофибриллы имеют вид тонких нитей диаметром порядка 1 мкм, расположенных в саркоплазме вдоль волокна. В одном мышечном волокне может содержать

Мы часто слышим, что здоровье человека во многом зависит от его иммунитета. Что такое иммунитет? В чём его значение? Попробуем разобраться в этих непонятных для многих вопросах.

Иммунитет – это устойчивость организма, его способность противостоять патогенным болезнетворным микробам, токсинам, а также воздействию чужеродных веществ, обладающих антигенными свойствами. Иммунитет обеспечивает гомеостаз – постоянство внутренней среды организма на клеточном и молекулярном уровне.
Иммунитет бывает:

- врождённый (наследственный);

- приобретённый.

Врождённый иммунитет у человека и животных передаётся от одного поколения к другому. Он бывает абсолютным и относительным .

Примеры абсолютного иммунитета. Человек абсолютно не болеет чумой птиц или чумой крупного рогатого скота. Животные абсолютно не болеют брюшным тифом, корью, скарлатиной и другими болезнями человека.

Пример относительного иммунитета. Голуби обычно не болеют сибирской язвой, но их можно заразить ею, если предварительно дать голубям алкоголь.

Приобретённый иммунитет человек приобретает в течение жизни. Этот иммунитет не передаётся по наследству. Он подразделяется на искусственный и естественный . А они, в свою очередь, могут быть активным и пассивным .

Искусственный приобретённый иммунитет создаётся при медицинском вмешательстве.

Активный искусственный иммунитет возникает при проведении прививок вакцинами и анатоксинами.

Пассивный искусственный иммунитет возникает при введении в организм сывороток и гамма – глобулинов, в которых есть антитела в готовом виде.

Естественный приобретённый иммунитет создаётся без медицинского вмешательства.

Активный естественный иммунитет возникает после перенесенного заболевания или скрытой инфекции.

Пассивный естественный иммунитет создаётся при передаче антител от организма матери ребёнку при его внутриутробном развитии.

Иммунитет – это одна из важнейших характеристик человека и всех живых организмов. Принцип иммунной защиты состоит в распознавании, переработке и удалении чужеродных структур из организма.

Неспецифические механизмы иммунитета – это общие факторы и защитные приспособления организма. К ним относятся кожа, слизистые оболочки, явление фагоцитоза, воспалительная реакция, лимфоидная ткань, барьерные свойства крови и тканевых жидкостей. Каждый из этих факторов и приспособлений направлен против всех микробов.

Неповреждённые кожа, слизистые глаз, дыхательных путей с ресничками мерцательного эпителия, желудочно – кишечного тракта, половых органов являются непроницаемыми для большинства микроорганизмов.

Шелушение кожи – важный механизм её самоочищения.

Слюна содержит лизоцим, обладающий антимикробным действием.

В слизистых оболочках желудка и кишечника вырабатываются энзимы, которые способны уничтожить болезнетворные микробы (патогены), которые туда попадают.

На слизистых оболочках существует естественная микрофлора, способная препятствовать прикреплению патогенов к этим оболочкам, и защищать, таким образом, организм.

Кислая среда желудка и кислая реакция кожи – биохимические факторы неспецифической защиты.

Слизь также неспецифический фактор защиты. Она покрывает клеточные мембраны на слизистых оболочках, связывает попавшие на слизистую оболочку патогены и убивает их. Состав слизи смертелен для многих микроорганизмов.

Клетки крови, являющиеся факторами неспецифической защиты: нейтрофильные, эозинофильные, базофильные лейкоциты, тучные клетки, макрофаги, тромбоциты.

Кожа и слизистые оболочки первый барьер на пути патогенов. Эта защита довольно эффективна, но есть микроорганизмы, способные её преодолеть. Например, микобактерии туберкулёза, сальмонеллы, листерии, некоторые кокковые формы бактерий. Определённые формы бактерий вовсе не уничтожаются естественной защитой, например, капсулярные формы пневмококка.

Специфические механизмы иммунной защиты -это вторая составляющая иммунной системы. Они срабатывают при проникновении чужеродного микроорганизма (патогена) через естественные неспецифические защитные приспособления организма. Появляется воспалительная реакция на месте внедрения патогенов .

Воспаление локализует инфекцию, происходит гибель проникших микробов, вирусов или других частиц. Основная роль в этом процессе принадлежит фагоцитозу.

Фагоцитоз – поглощение и ферментативное переваривание клетками фагоцитами микробов или других частиц. При этом организм освобождается от вредных чужеродных веществ. В борьбе с инфекцией происходит мобилизация всех защитных сил организма.

С 7 – 8 дня болезни включаются специфические механизмы иммунитета. Это образование антител в лимфатических узлах, печени, селезёнке, костном мозге. Специфические антитела образуются в ответ на искусственное введение антигенов при проведении прививок или в результате естественной встречи с инфекцией.

Антитела – белки, которые вступают в связь с антигенами и нейтрализуют их. Они действуют только против тех микробов или токсинов, в ответ на введение которых они вырабатываются. В крови человека содержатся белки альбумины и глобулины. Все антитела относятся к глобулинам: 80 - 90% антител составляют гамма - глобулины; 10 – 20% - бета – глобулины.

Антигены – чужеродные белки, бактерии, вирусы, клеточные элементы, токсины. Антигены вызывают в организме образование антител и вступают с ними во взаимодействие. Эта реакция строго специфичная.

Для предупреждения инфекционных болезней человека создано большое количество вакцин и сывороток.

Вакцины – это препараты из микробных клеток или их токсинов, применение которых называется иммунизацией. Через 1 – 2 недели после введения вакцины в организме человека появляются защитные антитела. Основное назначение вакцин – профилактика .

Современные вакцинальные препараты подразделяются на 5 групп.

1.Вакцины из живых ослабленных возбудителей.

2.Вакцины из убитых микробов.

3.Химические вакцины.

4.Анатоксины.

5.Ассоциированные или комбинированные вакцины.

При длительно протекающих инфекционных заболеваниях, таких как, фурункулёз, бруцеллёз, хроническая дизентерия и других, вакцины могут применяться с целью лечения.

Сыворотки - готовят из крови переболевших инфекционной болезнью людей или искусственно зараженных животных. В отличие от вакцин, сыворотки чаще применяют для лечения инфекционных больных и реже для профилактики. Сыворотки бывают антимикробные и антитоксические. Сыворотки, очищенные от балластных веществ называются гамма – глобулинами . Их готовят из человеческой крови и крови животных.

Сыворотки и гамма – глобулины содержат готовые антитела, поэтому в инфекционных очагах лицам, находившимся в контакте с заразным больным, с профилактической целью вводят сыворотку или гамма – глобулин, а не вакцину.

Интерферон – фактор иммунитета, белок, вырабатываемый клетками человеческого организма, обладающий защитным действием. Он занимает промежуточное положение между общими и специфическими механизмами иммунитета.

Органы иммунной системы (ОИС):

- первичные (центральные);

- вторичные (периферические) .

Первичные ОИС.

А. Тимус (Вилочковая железа) – центральный орган иммунной системы. В нём происходит дифференцировка Т – лимфоцитов из предшественников, поступающих из красного костного мозга.

Б. Красный костный мозг – центральный орган кроветворения и иммуногенеза, содержит стволовые клетки, находится в ячейках губчатого вещества плоских костей и в эпифизах трубчатых костей. В нём происходит дифференцировка В – лимфоцитов из предшественников, а также содержатся Т – лимфоциты.

Вторичные ОИС .

А. Селезёнка – паренхиматозный орган иммунной системы, также выполняет депонирующую функцию по отношению к крови. Селезёнка может сокращаться, так как имеет гладкомышечные волокна. В ней есть белая и красная пульпа.

Белая пульпа составляет 20%. В ней лимфоидная ткань, в которой есть В – лимфоциты, Т – лимфоциты и макрофаги.

Красная пульпа составляет 80%. Она выполняет следующие функции:

Депонирование зрелых форменных элементов крови;

Контроль состояния и разрушения старых и повреждённых эритроцитов и тромбоцитов;

Фагоцитоз инородных частиц;

Обеспечение дозревания лимфоидных клеток и превращение моноцитов в макрофаги.


Б. Лимфатические узлы.

В. Миндалины.


Г. Лимфоидная ткань, ассоциированная с бронхами, с кишечником, с кожей.

К моменту рождения вторичные ОИС не сформированы, так как не контактируют с антигенами. Лимфопоэз (образование лимфоцитов) происходит, если есть антигенная стимуляция. Вторичные ОИС заселяются В - и Т - лимфоцитами из первичных ОИС. После контакта с антигеном лимфоциты включаются в работу. Ни один антиген не остаётся незамеченным лимфоцитами.


Иммунокомпетентные клетки – макрофаги и лимфоциты. Они совместно участвуют в защитных иммунных процессах, обеспечивают иммунный ответ.

Реакция организма человека на внедрение инфекции или яда называется иммунный ответ. Любое вещество, отличающееся по своей структуре от структуры тканей человека способно вызвать иммунный ответ.

Клетки, участвующие в иммунном ответе , Т – лимфоциты.


К ним относятся:

Т – хелперы (Т - помощники). Главная цель иммунного ответа – нейтрализация внеклеточного вируса и разрушение зараженных клеток, продуцирующих вирус.

Цитотоксические Т – лимфоциты - распознают инфицированные вирусом клетки и разрушают их с помощью секретируемых цитотоксинов. Активация цитотоксических Т – лимфоцитов происходит при участии Т – хелперов.

Т – хелперы – регуляторы и администраторы иммунного ответа.

Т – цитотоксические лимфоциты – киллеры.

В – лимфоциты – синтезируют антитела и отвечают за гуморальный иммунный ответ, который заключается в активации В – лимфоцитов и дифференцировке их в плазматические клетки, вырабатывающие антитела. Антитела к вирусам вырабатываются после взаимодействия В – лимфоцитов с Т – хелперами. Т – хелперы способствуют размножению В – лимфоцитов и их дифференцировке. Антитела не проникают внутрь клетки и нейтрализуют только внеклеточный вирус.

Нейтрофилы – это неделящиеся и короткоживущие клетки, содержат большое количество антибиотических белков, которые содержатся в различных гранулах. К этим белкам относятся лизоцим, липопероксидаза и другие. Нейтрофилы самостоятельно перемещаются к месту нахождения антигена, «прилипают» к эндотелию сосудов, мигрируют через стенку к месту нахождения антигена и заглатывают его (фагоцитарный цикл). Далее они погибают и превращаются в клетки гноя.

Эозинофилы – способны фагоцитировать микробы и уничтожать их. Главная их задача – уничтожение гельминтов. Эозинофилы узнают гельминтов, контактируют с ними и выделяют в зону контакта вещества – перфорины. Это белки, которые встраиваются в клетки гельминта. В клетках образуются поры, через которые внутрь клетки устремляется вода и гельминт погибает от осмотического шока.

Базофилы . Есть 2 формы базофилов:

Собственно базофилы, циркулирующие в крови;

Тучные клетки – базофилы, находящиеся в тканях.

Тучные клетки находятся в различных тканях: в лёгких, в слизистых оболочках и вдоль сосудов. Они способны вырабатывать вещества, стимулирующие анафилаксию (расширение сосудов, сокращение гладких мышц, сужение бронхов). Таким образом они участвуют в аллергических реакциях.

Моноциты превращаются в макрофаги при переходе из кровеносной системы в ткани. Существуют несколько видов макрофагов:

1.Некоторые антигенпредставляющие клетки, которые поглощают микробы и «представляют» их Т – лимфоцитам.

2.Клетки Купфера – макрофаги печени.

3.Альвеолярные макрофаги – макрофаги лёгких.

4.Остеокласты – костные макрофаги, гигантские многоядерные клетки, удаляющие костную ткань путём растворения минеральной составляющей и разрушения коллагена.

5.Микроглия – фагоциты центральной нервной системы, уничтожающие инфекционные агенты и разрушающие нервные клетки.

6.Кишечные макрофаги и т.д.

Функции их разнообразны:

Фагоцитоз;

Взаимодействие с иммунной системой и поддержание иммунного ответа;

Поддержание и регулирование воспаления;

Взаимодействие с нейтрофилами и привлечение их в очаг воспаления;

Выделение цитокинов;

Регуляция процессов репарации (восстановления);

Регуляция процессов свертывания крови и проницаемости капилляров в очаге воспаления;

Синтез компонентов системы комплемента.

Натуральные киллеры (NK-клетки) - лимфоциты, обладающие цитотоксической активностью. Они способны контактировать с клетками – мишенями, секретировать токсичные для них белки, убивать их или отправлять в апоптоз (процесс программируемой клеточной гибели). Натуральные киллеры распознают клетки, поражённые вирусами и опухолевые клетки.

Макрофаги, нейтрофилы, эозинофилы, базофилы и натуральные киллеры обеспечивают врождённый иммунный ответ . В развитии заболеваний – патологии неспецифический ответ на повреждение называется воспалением. Воспаление – неспецифическая фаза последующих специфических иммунных реакций.

Неспецифический иммунный ответ – первая фаза борьбы с инфекцией, запускается сразу после попадания микроба в организм. Неспецифический иммунный ответ практически одинаков для всех видов микробов и заключается в первичном разрушении микроба (антигена) и формировании очага воспаления. Воспаление - это универсальный защитный процесс, направленный на предотвращение распространения микроба. Высокий неспецифический иммунитет создаёт высокую сопротивляемость организма к различным заболеваниям.

В некоторых органах у человека и млекопитающих появление чужеродных антигенов не вызывает иммунного ответа. Это следующие органы: головной и спинной мозг, глаза, семенники, эмбрион, плацента.

При нарушении иммунологической устойчивости повреждаются тканевые барьеры и возможно развитие иммунных реакций на собственные ткани и клетки организма. Например, выработка антител к тканям щитовидной железы вызывает развитие аутоиммунного тиреоидита.

Специфический иммунный ответ - это вторая фаза защитной реакции организма. При этом происходит распознавание микроба и выработка факторов защиты, направленных специально против него. Специфический иммунный ответ бывает клеточный и гуморальный.

Процессы специфического и неспецифического иммунного ответа пересекаются и дополняют друг друга.

Клеточный иммунный ответ заключается в формировании цитотоксических лимфоцитов, способных разрушать клетки, в мембранах которых содержатся чужеродные белки, например, вирусные белки. Клеточный иммунитет ликвидирует вирусные инфекции, а также такие бактериальные инфекции, как туберкулёз, проказа, риносклерома. Активированными лимфоцитами разрушаются и раковые клетки.

Гуморальный иммунный ответ создаётся В – лимфоцитами, которые распознают микроб (антиген) и вырабатывают антитела по принципу на определённый антиген – определённое антитело. Антитела (иммуноглобулины, Ig) – это молекулы белков, соединяющиеся с микробом и вызывающие его гибель и выведение из организма.

Существуют несколько типов иммуноглобулинов, каждый из которых выполняет определённую функцию.

Иммуноглобулины типа А (IgА) вырабатываются клетками иммунной системы и выводятся на поверхность кожи и слизистых оболочек. Они содержатся во всех физиологических жидкостях - слюне, грудном молоке, моче, слезах, желудочном и кишечном секретах, желчи, во влагалище, лёгких, бронхах, мочеполовых путях и препятствуют проникновению микробов через кожу и слизистые оболочки.

Иммуноглобулины типа М (IgM) первыми синтезируются в организме новорождённых, выделяются в первое время после контакта с инфекцией. Это большие комплексы, способные связывать несколько микробов одновременно, способствуют быстрому выведению антигенов из циркуляции, предотвращают прикрепление антигенов к клеткам. Они являются признаком развития острого инфекционного процесса.


Иммуноглобулины типа G (IgG) появляются вслед за Ig М и длительно защищают организм от различных микробов. Являются основным фактором гуморального иммунитета.

Иммуноглобулины типа D (IgD) функционируют в качестве мембранных рецепторов для связывания с микробами (антигенами).

Антитела вырабатываются во время всех инфекционных болезней. Развитие гуморального иммунного ответа составляет примерно 2 недели. За это время вырабатывается достаточное количество антител для борьбы с инфекцией.

Цитотоксические Т - лимфоциты и В – лимфоциты сохраняются в организме длительное время и при возникновении нового контакта с микроорганизмом создают мощный иммунный ответ.

Иногда чужеродными становятся клетки нашего собственного организма, у которых повреждена ДНК и которые утратили свою нормальную функцию. Иммунная система непрерывно отслеживает эти клетки, так как из них может развиться злокачественная опухоль, и уничтожает их. Сначала лимфоциты окружают чужеродную клетку. Затем прикрепляются к её поверхности и вытягивают по направлению к клетке – мишени специальный отросток. Когда отросток касается поверхности клетки – мишени, клетка погибает за счёт впрыскивания лимфоцитом антител и специальных губительных ферментов. Но погибает и нападавший лимфоцит. Макрофаги также захватывают чужеродные микроорганизмы и переваривают их.

Сила иммунного ответа зависит от реактивности организма, то есть от способности его реагировать на внедрение инфекции и ядов. Существуют нормоэргический, гиперэргический и гипоэргический ответы.

Нормоэргический ответ приводит к устранению инфекции в организме и выздоровлению. Повреждение тканей в ходе воспалительной реакции не вызывает серьёзных последствий для организма. Иммунная система при этом функционирует нормально.

Гиперэргический ответ развивается на фоне сенсибилизации к антигену. Сила иммунного ответа во многом превышает силу агрессии микробов. Воспалительная реакция очень сильная и приводит к повреждению здоровых тканей. Гиперэргические иммунные реакции лежат в основе формирования аллергии.

Гипоэргический ответ слабее агрессии со стороны микробов. Инфекция устраняется не полностью, заболевание переходит в хроническую форму. Гипоэргический иммунный ответ характерен для детей, пожилых людей, у лиц с иммунодефицитами. Иммунная система у них ослаблена.

Повышение иммунитета – важнейшая задача каждого человека. Так, если человек болеет острыми респираторными вирусными инфекциями (ОРВИ) чаще 5ти раз в год, то ему следует подумать об укреплении иммунных функций организма.

Факторы, ослабляющие иммунные функции организма :

Оперативные вмешательства и наркоз;

Переутомление;

Хронический стресс;

Приём любых гормональных препаратов;

Лечение антибиотиками;

Атмосферные загрязнения;

Неблагоприятная радиационная обстановка;

Травмы, ожоги, переохлаждения, кровопотери;

Частые простудные заболевания;

Инфекционные заболевания и интоксикации;

Хронические заболевания, в том числе сахарный диабет;
- вредные привычки (курение, частое употребление алкоголя, наркотиков и спайсов);

Малоподвижный образ жизни;
- нерациональное питание - употребление в пищу продуктов, снижающих иммунитет - копченостей, жирного мяса, колбас, сосисок, консервов, мясных полуфабрикатов;
- недостаточное потребление воды (менее 2х литров в сутки).

Задачей каждого человека является укрепление своего иммунитета, как правило, неспецифического иммунитета.

Для укрепления иммунитета следует:

Соблюдать режим труда и отдыха;

Полноценно питаться, в пище должно содержаться достаточное количество витаминов, минералов, аминокислот; для укрепления иммунитета необходимы в достаточном количестве следующие витамины и микроэлементы: А, Е, С, В2, В6, В12, пантотеновая кислота, фолиевая кислота, цинк, селен, железо;

Заниматься закаливанием и физической культурой;
- принимать антиоксиданты и другие препараты для укрепления иммунитета;

Избегать самостоятельного приёма антибиотиков, гормонов, кроме тех случаев, когда они назначены врачом;

Избегать частого употребления в пищу продуктов, снижающих иммунитет;
- употреблять для питья не менее 2х литров воды в сутки.

Создание специфического иммунитета против определённого заболевания можно только с помощью введения вакцины. Вакцинация – надёжный способ защититься от конкретного заболевания. При этом активный иммунитет осуществляется за счёт введения ослабленного или убитого вируса, который заболевание не вызывает, но включает работу иммунной системы.

Прививки ослабляют общий иммунитет, ради повышения специфического. В результате могут возникнуть побочные эффекты, например появление «гриппоподобных» симптомов в лёгкой форме: недомогание, головная боль, слегка повышенная температура. Могут обостриться имеющиеся хронические заболевания.

Иммунитет ребёнка в руках матери. Если мать кормит своё дитя грудным молоком до года, то ребёнок растёт здоровым крепким и хорошо развивается.

Хорошая иммунная система – это предпосылка для долгой и здоровой жизни. Наш организм постоянно борется с микробами, вирусами, чужеродными бактериями, которые могут нанести смертельный вред нашему организму и резко сократить продолжительность жизни.

Нарушение иммунной системы можно рассматривать, как причину старения . Это самоуничтожение организма из – за нарушений в иммунной системе.

Даже в молодости, при отсутствии каких – либо заболеваний и ведении здорового образа жизни, в организме непрерывно появляются ядовитые вещества, способные разрушить клетки организма и повредить их ДНК. Большая часть ядовитых веществ образуется в кишечнике. Пища никогда не переваривается на 100%. Непереваренные белки пищи подвергаются процессу гниения, а углеводы – брожению. Токсичные вещества, образующиеся при этих процессах, попадают в кровь и оказывают негативное влияние на все клетки организма.

С позиции Восточной медицины, нарушение иммунитета – это нарушение гармонизации (баланса) в энергетической системе организма . Энергии, поступающие в организм из внешней среды через энергетические центры – чакры и образующиеся при расщеплении пищи в процессе пищеварения, по каналам тела – меридианам поступают в органы, ткани, части тела, в каждую клетку организма.

При нарушении иммунитета и развитии заболеваний возникает энергетический дисбаланс. В определённых меридианах, органах, тканях, частях тела энергии становится больше, она в избытке. В других меридианах, органах, тканях, частях тела её становится меньше, она в недостатке. Это является основой для развития различных заболеваний, в том числе инфекционных, нарушения иммунитета.

Врачи – рефлексотерапевты перераспределяют в организме энергии различными рефлексотерапевтическими методами. Недостаточные энергии - усиливают, энергии, которые в избытке, – ослабляют, и это позволяет устранять различные заболевания и повышать иммунитет. Происходит активизация механизма самовосстановления в организме.

Степень активности иммунитета тесно связана с уровнем взаимодействия его компонентов.

Варианты патологии иммунной системы.

А. Иммунодефицит – врождённое или приобретённое отсутствие или ослабление одного из звеньев системы иммунитета. При недостаточности иммунной системы даже безвредные бактерии, десятилетиями живущие в нашем организме, могут вызвать тяжёлые заболевания. Иммунодефициты делают организм беззащитным против микробов и вирусов. В этих случаях антибиотики и противовирусные препараты не эффективны. Они незначительно помогают организму, но не излечивают его. При длительном напряжении и срыве регуляции иммунная система теряет своё защитное значение, развивается иммунодефицит – недостаточность иммунитета .

Иммунодефицит может быть клеточным и гуморальным . Тяжёлые сочетанные иммунодефициты приводят к тяжёлым клеточным нарушениям, при которых отсутствуют Т – лимфоциты и В – лимфоциты. Это бывает при наследственных заболеваниях. У таких больных часто не обнаруживают миндалины, лимфоузлы очень малы или отсутствуют. У них бывает приступообразный кашель, западение грудной клетки при дыхании, хрипы, напряженный атрофичный живот, афтозный стоматит, хроническое воспаление лёгких, кандидамикоз глотки, пищевода и кожи, диарея, истощение, задержка роста. Такие прогрессирующие симптомы приводят к смертельному исходу в течение 1 – 2 лет.

Иммунологическая недостаточность первичного происхождения – генетическая неспособность организма воспроизводить то или иное звено иммунного ответа.

Первичные врождённые иммунодефициты. Они проявляются вскоре после рождения и являются наследственными. Например, гемофилия, карликовость, некоторые виды глухоты. Родившийся ребёнок с врождённым дефектом иммунной системы ничем не отличается от здорового новорождённого до тех пор, пока в его крови циркулируют антитела, полученные от матери через плаценту, а также с материнским молоком. Но скрытое неблагополучие скоро проявляется. Начинаются повторные инфекции – воспаление лёгких, гнойные поражения кожи и т. д., ребёнок отстаёт в развитии, он ослаблен.

Вторичные приобретенные иммунодефициты. Они возникают после какого – то первичного воздействия, например, после воздействия ионизирующего излучения. При этом разрушается лимфатическая ткань – главный орган иммунитета и ослабляется иммунная система. Повреждают иммунную систему различные патологические процессы, недостаточное питание, гиповитаминозы.

Большинство заболеваний сопровождается иммунологической недостаточностью в той или иной степени, и она может быть причиной продолжения и утяжеления болезни.

Иммунологическая недостаточность возникает после:

Вирусных инфекций, гриппа, кори, гепатита;

Приёма кортикостероидов, цитостатиков, антибиотиков;

Рентгеновского, радиоактивного облучения.

Синдром приобретенного иммунодефицита может быть самостоятельным заболеванием, вызванным поражением клеток иммунной системы вирусом.

Б. Аутоиммунные состояния – при них иммунитет направлен против собственных органов и тканей в организме, повреждаются собственные ткани организма. Антигены при этом могут быть чужеродные и собственные ткани. Чужеродные антигены могут вызывать аллергические заболевания.

В. Аллергия. Антиген в этом случае становится аллергеном, на него вырабатываются антитела. Иммунитет в этих случаях выступает не как защитная реакция, а как развитие повышенной чувствительности к антигенам.

Г. Болезни иммунной системы. Это инфекционные заболевания самих органов иммунной системы: СПИД, инфекционный мононуклеоз и другие.

Д. Злокачественные опухоли иммунной системы – вилочковой железы, лимфатических узлов и другие.

Для нормализации иммунитета используют иммуномодулирующие лекарственные препараты, влияющие на функцию иммунной системы.

Различают три основные группы иммуномодулирующих препаратов.

1. Иммунодепрессанты - угнетают иммунную защиту организма.

2. Иммуностимуляторы – стимулируют функцию иммунной защиты и повышают сопротивляемость организма.

3. Иммуномодуляторы – препараты действие, которых зависит от функционального состояния иммунной системы. Эти препараты тормозят деятельность иммунной системы, если она чрезмерно повышена, и повышают её, если она понижена. Эти препараты используются в комплексном лечении параллельно с назначением антибиотиков, противовирусных, противогрибковых и других средств под контролем иммунологических исследований крови. Они могут использоваться на этапе реабилитации, выздоровления.

Иммунодепрессанты используются при различных аутоиммунных заболеваниях, вирусных заболеваниях, которые вызывают аутоиммунные состояния, а также при пересадке донорских органов. Иммунодепрессанты угнетают клеточное деление и снижают активность восстановительных процессов.

Существует несколько групп иммунодепрессантов.

Антибиотики – продукты жизнедеятельности различных микроорганизмов, они блокируют размножение других микроорганизмов и применяются для лечения различных инфекционных заболеваний. Группа антибиотиков, блокирующая синтез нуклеиновых кислот (ДНК и РНК), используется в качестве иммунодепрессантов, угнетает размножение бактерий и тормозит размножение клеток иммунной системы. К этой группе относятся Актиномицин и Колхицин.

Цитостатики – препараты, оказывающие тормозящее влияние на размножение и рост клеток организма. К этим препаратам особенно чувствительны клетки красного костного мозга, клетки иммунной системы, волосяные фолликулы, эпителий кожи и кишечника. Под влиянием цитостатиков ослабляется клеточное и гуморальное звено иммунитета, снижается выработка клетками иммунной системы биологически активных веществ, вызывающих воспаление. К этой группе относятся Азатиоприн, Циклофосфан. Цитостатики используют в лечении псориаза, болезни Крона, ревматоидного артрита, а также при трансплантации органов и тканей.

Алкилирующие вещества вступают в химическую реакцию с большинством активных веществ организма, нарушая их активность, тем самым замедляя метаболизм организма в целом. Ранее алкилирующие вещества применялись в качестве боевых ядов в военной практике. К ним относятся Циклофосфан, Хлорбутин.

Антиметаболиты – препараты, замедляющие обмен веществ организма благодаря конкуренции с биологически активными веществами. Наиболее известным метаболитом является Меркаптопурин, блокирующий синтез нуклеиновых кислот и деление клеток, используется в онкологической практике – замедляет деление раковых клеток.

Глюкокортикоидные гормоны наиболее распространённые иммунодепрессанты. К ним относятся Преднизолон, Дексаметазон. Эти препараты используются для подавления аллергических реакций, для лечения аутоиммунных заболеваний, в трансплантологии. Они блокируют синтез некоторых биологически активных веществ, которые участвуют в делении и размножении клеток. Длительный приём глюкокортикоидов может привести к развитию синдрома Иценко – Кушинга, который включает повышение массы тела, гирсутизм (избыточный рост волос на теле), гинекомастию (рост молочных желез у мужчин), развитие язвы желудка, артериальную гипертензию. У детей может быть замедление роста, снижение регенеративной способности организма.

Приём иммунодепрессантов может привести к побочным реакциям: присоединение инфекций, выпадение волос, развитие язв на слизистых оболочках желудочно – кишечного тракта, развитие онкологических заболеваний, ускорение роста раковых опухолей, нарушение развития плода у беременных женщин. Лечение иммунодепрессантами проводится под контролем врачей специалистов.

Иммуностимуляторы - используются для стимуляции иммунной системы организма. К ним относятся различные группы фармакологических препаратов.

Иммуностимуляторы, изготовленные на основе микроорганизмов (Пирогенал, Рибомунил, Биостим, Бронховаксом), содержат антигены различных микробов и их неактивные токсины. При введении в организм эти препараты вызывают иммунный ответ и формирование иммунитета против введённых антигенов микробов. Эти препараты активируют клеточное и гуморальное звено иммунитета, повышается общая сопротивляемость организма и скорость ответа на потенциальную инфекцию. Они используются в лечении хронических инфекций, нарушается устойчивость организма к инфекции, и устраняются микробы инфекции.

Биологически активные экстракты тимуса животных стимулируют клеточное звено иммунитета. В тимусе созревают лимфоциты. Пептидные экстракты тимуса (Тималин, Тактивин, Тимомодулин) используются при врождённой недостаточности Т – лимфоцитов, вторичных иммунодефицитах, раковых заболеваниях, отравлениях иммунодепрессантами.

Стимуляторы костного мозга (Миелопид) изготавливают из клеток костного мозга животных. Они повышают активность костного мозга, и ускоряется процесс кроветворения, повышается иммунитет за счёт увеличения количества иммунных клеток. Используются они в лечении остеомиелита, при хронических бактериальных заболеваниях. иммунодефицитах.

Цитокины и их производные относятся к биологически активным веществам, активирующим молекулярные процессы иммунитета. Природные цитокины вырабатываются клетками иммунной системы организма и являются информационными посредниками и стимуляторами роста. Они обладают выраженным противовирусным, противогрибковым, антибактериальным и противоопухолевым действием.

Препараты Лейкиферон, Ликомакс, различные виды интерферонов используют в лечении хронических, в том числе вирусных, инфекций, в комплексной терапии ассоциированных инфекций (одновременное заражение грибковыми, вирусными, бактериальными инфекциями), в лечении иммунодефицитов различной этиологии, в реабилитации больных, после лечения антидепрессантами. Интерферон содержащий препарат Пегасис используется в лечении хронических вирусных гепатитов В и С.

Стимуляторы синтеза нуклеиновых кислот (Нуклеинат натрия, Полудан) обладают иммуностимулирующим и выраженным анаболическим действием. Они стимулируют образование нуклеиновых кислот, при этом ускоряется деление клеток, регенерация тканей организма, повышается синтез белков, повышается устойчивость организма к различным инфекциям.

Левамизол (Декарис) известное противоглистное средство, также обладает иммуностимулирующим действием. Благоприятно влияет на клеточное звено иммунитета: Т – и В – лимфоциты.

Препараты 3 поколения, созданные в 90х годах 20 века, наиболее современные иммуномодуляторы : Кагоцел, Полиоксидоний, Гепон, Майфортик, Иммуномакс, Селлсепт, Сандиммун, Трансфер Фактор. Перечисленные препараты, кроме Трансфер Фактора, имеют узконаправленное применение, пользоваться ими можно только по назначению врача.

Иммуномодуляторы растительного происхождения гармонично влияют на наш организм, разделяются на 2 группы.

В первую группу входят солодка, омела белая, касатик (ирис) молочно – белый, кубышка жёлтая. Они способны не только стимулировать, но и угнетать иммунитет. Лечение ими следует проводить с проведением иммунологических исследований и под контролем врача.

Вторая группа иммуномодуляторов растительного происхождения весьма обширна. К ней относятся: эхинацея, женьшень, лимонник, аралия манчжурская, родиола розовая, грецкий орех, кедровый орех, девясил, крапива, клюква, шиповник, чабрец, зверобой, мелисса, берёза, морская капуста, инжир, король кордицепс и другие растения. Они оказывают мягкое, медленное, стимулирующее действие на иммунитет, не вызывая почти никаких побочных эффектов. Они могут использоваться для самолечения. Из этих растений изготавливают иммуномодулирующие препараты, продающиеся в аптечной сети. Например, Иммунал, Иммунорм изготовлены из эхинацеи.

Многие современные иммуномодуляторы обладают и противовирусным действием. К ним относятся: Анаферон (таблетки для рассасывания), Генферон (ректальные свечи), Арбидол (таблетки), Неовир (раствор для инъекций), Альтевир (раствор для инъекций), Гриппферон (капли в нос), Виферон (ректальные свечи), Эпиген Интим (спрей), Инфагель (мазь), Изопринозин (таблетки), Амиксин (таблетки), Реаферон ЕС (порошок для приготовления раствора, вводится внутривенно), Ридостин (раствор для инъекций), Ингарон (раствор для инъекций), Лавомакс (таблетки).

Все вышеуказанные препараты следует использовать только по назначению врача, так как они имеют побочные действия. Исключением является Трансфер Фактор, допущенный к применению для взрослых и детей. Он не имеет побочных действий.

Противовирусными свойствами обладает большая часть растительных иммуномодуляторов. Польза иммуномодуляторов несомненна. Лечение многих заболеваний без применения этих препаратов становится менее эффективным. Но следует учитывать индивидуальные особенности организма человека и тщательно подбирать дозировки.

Бесконтрольное и длительное применение иммуномодуляторов может принести организму вред: истощение иммунной системы, снижение иммунитета.

Противопоказания к приёму иммуномодуляторов – наличие аутоиммунных заболеваний.

К этим заболеваниям относятся: системная красная волчанка, ревматоидный артрит, сахарный диабет, диффузный токсический зоб, рассеянный склероз, первичный билиарный цирроз печени, аутоиммунный гепатит, аутоиммунный тиреоидит, некоторые формы бронхиальной астмы, аддисонова болезнь, миастения и некоторые другие редкие формы заболеваний. Если человек, страдающий одной из этих болезней, самостоятельно начнёт принимать иммуномодуляторы, начнётся обострение заболевания с непредсказуемыми последствиями. Иммуномодуляторы следует принимать по согласованию с врачом и под контролем врача.

Иммуномодуляторы для детей нужно давать с осторожностью , не чаще 2х раз в год, если ребёнок часто болеет, и под контролем врача – педиатра.

Для детей существуют 2 группы иммуномодуляторов: естественные и искусственные.

Естественные – это натуральные продукты: мёд, прополис, шиповник, алоэ, эвкалипт, женьшень, лук, чеснок, капуста, свекла, редька и другие. Из всей этой группы наиболее подходящим является мёд, полезный и приятный на вкус. Но следует помнить о возможной аллергической реакции ребёнка на продукты пчеловодства. Лук и чеснок в сыром виде детям до 3х лет не назначаются.

Из естественных иммуномодуляторов детям можно назначать Трансфер Фактор, производимый из коровьего молозива, и Деринат, производимый и рыбьих молок.

Искусственные иммуномодуляторы для детей – это синтетические аналоги человеческих белков – группа интерферона. Назначать их может только врач.

Иммуномодуляторы при беременности . Иммунитет беременных женщин нужно по возможности повышать без помощи иммуномодуляторов, посредством правильного питания, специальных физических упражнений, закаливания, организации рационального режима дня. При беременности разрешены иммуномодуляторы Деринат и Трансфер Фактор по согласованию с врачом акушером – гинекологом.

Иммуномодуляторы при различных заболеваниях.

Грипп. При гриппе эффективно применение растительных иммуномодуляторов – шиповника, эхинацеи, лимонника, мелиссы, алоэ, мёда, прополиса, клюквы и других. Используются препараты Иммунал, Гриппферон, Арбидол, Трансфер Фактор. Эти же средства можно применять для профилактики гриппа в период его эпидемии. Но следует помнить и о противопоказаниях при назначении иммуномодуляторов. Так, природный иммуномодулятор шиповник противопоказан людям, страдающим тромбофлебитом и гастритом.

Острые респираторные вирусные инфекции (ОРВИ) (простуда) - лечатся противовирусными иммуномодуляторами, назначаемыми врачом, и природными иммуномодуляторами. При неосложнённой простуде можно не принимать никаких лекарственных препаратов. Рекомендуется обильное питьё (чай, минеральная вода, теплое молоко с содой и медом), промывание носа раствором пищевой соды в течение дня (2 чайных ложки соды растворить в стакане тёпло – горячей воды для промывания носа), при температуре – постельный режим. Если повышенная температура держится свыше 3х дней, а симптомы заболевания нарастают, нужно начинать более интенсивное лечение по согласованию с врачом.

Герпес – вирусное заболевание. Вирус герпеса есть почти у каждого человека в неактивной форме. При снижении иммунитета вирус активируется. При лечении герпеса иммуномодуляторы используются часто и обоснованно. Используются:

1.Группа интерферонов (Виферон, Лейкинферон, Гиаферон, Амиксин, Полудан, Ридостин и другие).

2.Неспецифические иммуномодуляторы (Трансфер Фактор, Кордицепс, препараты эхинацеи).

3. Также следующие препараты (Полиоксидоний, Галавит, Ликопид, Тамерит и другие).

Наиболее выраженный лечебный эффект иммуномодуляторов при герпесе, если они применяются совместно с поливитаминами.

ВИЧ – инфекция . Иммуномодуляторы не способны побороть вирус иммунодефицита человека, но значительно улучшают состояние пациента, активизируя его иммунную систему. Иммуномодуляторы используются в комплексном лечении ВИЧ – инфекции с антиретровирусными препаратами. При этом назначаются интерфероны, интерлейкины: Тимоген, Тимопоэтин, Ферровир, Амплиген, Тактивин, Трансфер Фактор, а также растительные иммуномодуляторы: женьшень, эхинацея, алоэ, лимонник, и другие.

Вирус папилломы человека (ВПЧ). Главное лечение – удаление папиллом. Иммуномодуляторы, в виде кремов и мазей, используются как вспомогательные средства, активизирующие иммунную систему человека. При ВПЧ применяютсявсе препараты интерферона, а также Имиквимод, Индинол, Изопринозин, Деринат, Аллизарин, Ликопид, Вобэнзим. Подбор препаратов осуществляет только врач, самолечение недопустимо.

Отдельные иммуномодулирующие препараты.

Деринат – иммуномодулятор, получаемый из рыбьих молок. Активизирует все звенья иммунитета. Обладает противовоспалительным и ранозаживляющим действием. Разрешён к применению для взрослых и детей. Назначается при ОРВИ, стоматитах, конъюнктивитах, гайморитах, хронических воспалениях гениталий, гангрене, плохо заживающих ранах, ожогах, обморожениях, геморрое. Выпускается в виде раствора для инъекций и раствора для наружного применения.

Полиоксидоний – иммуномодулятор, нормализующий иммунный статус: если иммунитет снижен, то полиоксидоний активизирует иммунную систему; при избыточно повышенном иммунитете препарат способствует его снижению. Полиоксидоний можно назначать без предварительных иммунологических анализов. Современный, мощный, безопасный иммуномодулятор. Выводит из организма человека токсины. Назначается взрослым и детям при любых острых и хронических инфекционных заболеваниях. Выпускается в таблетках, свечах, в порошке для приготовления раствора.

Интерферон – иммуномодулятор белковой природы, вырабатывается в человеческом организме. Обладает противовирусными и противоопухолевыми свойствами. Применяется чаще для профилактики гриппа и ОРВИ в периоды эпидемий, а также для восстановления иммунитета при выздоровлении после тяжелых болезней. Чем раньше начато профилактическое лечение интерфероном, тем выше его эффективность. Выпускается в ампулах в виде порошка – интерферон лейкоцитарный, разводится водой и закапывается в нос и в глаза. Также выпускается раствор для внутримышечного введения – Реаферон и ректальные свечи – Генферон. Назначается взрослым и детям. Противопоказан при аллергии на сам препарат и при любых аллергических заболеваниях.

Дибазол – иммуномодулирующий препарат старого поколения, способствует выработке в организме интерферона и понижает артериальное давление. Чаще назначается гипертоникам. Выпускается в таблетках и в ампулах для инъекций.

Декарис (Левамизол) – иммуномодулятор, обладает противоглистным действием. Может назначаться взрослым и детям в комплексном лечении герпеса, ОРВИ, бородавок. Выпускается в таблетках.

Трансфер Фактор – самый мощный современный иммуномодулятор. Производится из коровьего молозива. Не имеет противопоказаний и побочных эффектов. Безопасен для применения в любом возрасте. Назначается:

При иммунодефицитных состояниях различного происхождения;

При эндокринных и аллергических заболеваниях;

Может использоваться для профилактики инфекционных заболеваний. Выпускается в желатиновых капсулах для приёма внутрь.

Кордицепс – иммуномодулятор растительного происхождения. Производится из гриба кордицепс, растущего в горах Китая. Это иммуномодулятор, способный повышать сниженный иммунитет и снижать чрезмерно повышенный иммунитет. Устраняет даже генетические нарушения иммунитета.

Помимо иммуномодулирующего действия, регулирует работу органов и систем организма, препятствует старению организма. Это препарат быстрого действия. Уже в полости рта начинается его действие. Максимальный эффект проявляется через несколько часов после приёма внутрь.

Противопоказания к приёму кордицепса: эпилепсия, грудное кормление ребёнка. С осторожностью назначается беременным женщинам и детям младше пяти лет. В России и странах СНГ кордицепс используется в виде биологически активной добавки (БАД), производимой китайской корпорацией Тяньши. Выпускается в желатиновых капсулах.

Многие для повышения иммунитета предпочитают принимать витамины. И конечно, витамины – антиоксиданты С,А,Е. В первую очередь - витамин С. Человек должен ежедневно получать его извне. Однако, если принимать витамины бездумно, то они могут и навредить (например, избыток витаминов А, D и ряда других довольно опасен).

Способы укрепления иммунитета.

Из природных средств можно воспользоваться целебными травами для повышения иммунитета. Эхинацея, женьшень, чеснок, лакричник, зверобой, клевер красный, чистотел и тысячелистник – эти и сотни других лечебных растений подарила нам природа. Однако надо помнить, что длительное бесконтрольное использование многих трав способно вызвать истощение организма из-за интенсивного расхода ферментов. Кроме того, они, как и некоторые медикаментозные препараты, вызывают привыкание.

Лучшее средство для повышения иммунитета – закаливание и физическая активность. Принимайте контрастный душ, обливайтесь холодной водой, ходите в бассейн, посещайте баню. Начинать закаливаться можно в любом возрасте. При этом оно должно быть систематическим, постепенным, с учетом индивидуальных особенностей организма и климата региона, в котором вы проживаете. Пробежки утром, аэробика, фитнес, йога незаменимы для повышения иммунитета.

Нельзя проводить закаливающие процедуры после бессонной ночи, значительного физического и эмоционального перенапряжения, сразу после еды и когда болеете. Важно, чтобы выбранные вами лечебные мероприятия проводились регулярно, с плавным увеличением нагрузки.

Существует и особая диета для повышения иммунитета. Она предполагает исключение из рациона: копченостей, жирного мяса, колбас, сосисок, консервов, мясных полуфабрикатов. Необходимо уменьшить потребление консервированных, острых продуктов, пряностей. На столе каждый день должны быть курага, инжир, финики, бананы. Ими можно перекусывать в течение дня.

Обязательным условием для формирования крепкого иммунитета является здоровье кишечника, так как в его лимфоидном аппарате расположена большая часть клеток иммунной системы. Многие лекарственные средства, некачественная питьевая вода, заболевания, пожилой возраст, резкое изменение характера питания или климата могут вызвать кишечный дисбактериоз. При больном кишечнике хорошего иммунитета добиться невозможно. Помочь здесь смогут продукты, богатые лакто- и бифидобактериями (кефир, йогурт), а также фармпрепарат Линакс.

2. Эффективное средство для повышения иммунитета – напиток из хвои. Для его приготовления необходимо 2 столовых ложки сырья промыть в кипящей воде, после чего залить стаканом кипятка и варить 20 минут. Дать полчаса настояться, процедить. Употреблять отвар рекомендуется по стакану ежедневно. В него можно добавлять немного мёда или сахара. Можно выпивать не сразу, поделив весь объем на несколько частей.

3. 250 г лука нарезать как можно мельче и перемешать с 200 г сахара, влить 500 мл воды и варить на медленном огне 1,5 часа. После остывания добавить в раствор 2 столовых ложки мёда, процедить и поместить в стеклянную емкость. Пить 3–5 раз в день по одной столовой ложке.

4. Травяная смесь для повышения иммунитета, состоящая из мяты, иван-чая, цветов каштана и мелиссы. Каждой травы следует взять по 5 столовых ложек, залить одним литром кипятка и дать настояться в течение двух часов. Получившийся настой необходимо перемешать с отваром, приготовленным из клюквы и вишни (вишню можно заменить клубникой или калиной), и пить ежедневно по 500 мл.

5. Отличный чай для повышения иммунитета можно сделать из мелиссы, сушеницы топяной, корня валерианы, травы душицы, липового цвета, шишек хмеля, семени кориандра и пустырника. Все составляющие требуется смешать в равных долях. Затем 1 столовую ложку смеси всыпать в термос, залить 500 мл кипятка и оставить на ночь. Полученный чай нужно выпить в течение дня в 2–3 подхода. С помощью такого настоя можно не только укрепить иммунитет, но и улучшить работу сердечно - сосудистой системы.

6. Повышению иммунитета при герпесе поможет сочетание лимонника, солодки, эхинацеи пурпурной и женьшеня.

7. Хороший общеукрепляющий эффект имеет витаминный отвар из яблок. Для этого одно яблоко следует порезать дольками и прокипятить в стакане воды на водяной бане 10 минут. После этого добавить мед, настой из корок лимона, апельсина и немного заваренного чая.

8. Известно благотворное действие смеси из кураги, изюма, меда, грецких орехов, взятых по 200 г, и сока одного лимона. Все ингредиенты надо перекрутить в мясорубке и тщательно перемешать. Хранить такое средство следует в стеклянной таре, лучше в холодильнике. Ежедневно съедать по столовой ложке средства. Делать это необходимо утром натощак.

9. С наступлением холодов отличным средством для повышения иммунитета может оказаться обычный мед. Принимать его рекомендуется вместе с зеленым чаем. Для этого нужно заварить чай, добавить в него сок половины лимона, ½ стакана минеральной воды и столовую ложку меда. Пить получившийся целебный раствор следует два раза в день по половине стакана на протяжении трех недель.

10. Существует подарок природы – мумие. Оно обладает мощным общеукрепляющим, антитоксическим и противовоспалительным действием. С его помощью можно ускорить процессы обновления и восстановления всех тканей организма, смягчить действие радиационного излучения, повысить работоспособность, усилить потенцию. Мумие для повышения иммунитета следует принимать так: 5–7 г растворить до кашеобразного состояния в нескольких каплях воды, после чего добавить 500 г меда и все тщательно перемешать. Принимать по столовой ложке три раза в день перед едой. Хранить смесь нужно в холодильнике.

11. Среди рецептов для повышения иммунитета есть и такой. Смешать 5 г мумие, 100 г алоэ и сок трех лимонов. На сутки поставить смесь в прохладное место. Принимать по столовой ложке три раза в день.

12. Отличным средством для повышения иммунитета, способным избавить от ломоты в теле и головной боли, является витаминная ванна. Для ее приготовления можно использовать плоды или листья смородины, брусники, облепихи, рябины или шиповника. Применять все сразу совсем не обязательно. Возьмите в равных частях то, что есть под рукой, и залейте смесь на 15 минут кипятком. Получившийся настой перелейте в ванну, добавьте несколько капель масла кедра или эвкалипта. Находиться в такой лечебной воде необходимо не дольше 20 минут.

13. Имбирь – еще одно повышающее иммунитет растение. Нужно мелко порезать 200 г очищенного имбиря, добавить измельченные кусочки половины лимона и 300 г замороженных (свежих) ягод. Дать смеси настояться в течение двух дней. Использовать выделившийся сок для повышения иммунитета, добавляя его в чай или разбавляя водой.

Эффективна для укрепления иммунитета рефлексотерапия. Её можно использовать в домашних условиях. Гармонизация энергетической системы организма рефлексотерапевтическими приёмами позволяет значительно улучшить самочувствие, снять симптомы слабости, быстрой утомляемости, сонливости или бессонницы, нормализовать психо – эмоциональное состояние, предотвратить развитие обострений хронических заболеваний, укрепить иммунитет.

Если нет полынных палочек, можно использовать хорошо высушенную высокосортную сигарету. Курить при этом не нужно, так как это вредно. Воздействие на базисные точки пополняет запас энергии в организме.

Прогревать следует также точки соответствия щитовидной железе, вилочковой железе, надпочечникам, гипофизу и обязательно пупку. Пупок является зоной накопления и циркуляции сильной жизненной энергии.

После прогревания на эти точки следует поставить семена жгучего перца и зафиксировать их пластырем. Можно использовать и семена: шиповника, фасоли, редиса, проса, гречихи.

Полезным для поднятия общего тонуса является массаж пальцев эластичным массажным кольцом. Массировать можно каждый палец кисти и стопы, прокатывая по нему несколько раз кольцо, до появления тепла в пальце. Смотрите рисунки.

Уважаемые посетители блога, Вы ознакомились с моей статьёй про иммунитет, жду Ваших отзывов в комментариях.

http: //valeologija.ru/ Cтатья: Понятие об иммунитете и его видах.

http: //bessmertie.ru/ Статьи: Как повысить иммунитет.; Иммунитет и омоложение организма.

http: //spbgspk.ru/ Статья: Что такое иммунитет.

http: //health.wild-mistress.ru Cтатья: повышение иммунитета народными средствами.

Пак Чжэ Ву Сам себе Су Джок доктор М.2007г.

Материалы из Википедии.

– это комплексный процесс, состоящий в защите организма от проникновения чужеродных объектов, а также в устойчивости к отравляющим веществам. Такими чужеродными объектами являются бактерии и их отходы, вирусы, одноклеточные, паразитарные организмы, чужеродные ткани и органы (внедренные хирургическим путем), опухолевые клетки и т.д.

Вместе с тем иммунная реакция может происходить по разным сценариям. Вначале иммунная система блокирует деятельность чужеродных объектов (иммуногенов), создавая особые химически реактивные молекулы (иммуноглобулины), ингибирующие деятельность иммуногенов.

Иммуноглобулины создаются лимфоцитами, которые являются основными клетками иммунной системы. Существует два основных вида лимфоцитов, при совместной активности создающих все виды иммунных реакций: T-лимфоциты (T-клетки) и B-лимфоциты (B-клетки). T-лимфоциты при восприятии чужеродного материала сами осуществляют иммунный ответ – уничтожают генетически чужеродные клетки. T-лимфоциты – это основа клеточного иммунитета.

Гуморальный иммунитет

B-лимфоциты нейтрализуют чужеродные объекты дистанционно, создавая особые химически реактивные молекулы – антитела. B-лимфоциты – это основа гуморального иммунитета.

Существует пять классов антител: IgM, IgD, IgE, IgG, IgA. Основным классом иммуноглобулинов ялвятеся IgG. Антитела IgG составляют около 70% от всех антител. Иммуноглобулины IgA составляют около 20% всех антител. Антитела остальных классов составляют всего 10% от всех антител.

Когда происходит гуморальная иммунная реакция, уничтожение чужеродного материала происходит в плазме крови в виде химической реакции. Иммуноглобулины, созданные вследствие иммунной реакции, могут оставаться на многие годы и десятилетия, обеспечивая организм защитой от повторного заражения, например свинкой , ветрянкой , краснухой . Благодаря этому процессу возможна вакцинация .

T-клетки отвечают за иммунный ответ на двух уровнях. На первом уровне они способствуют обнаружению чужеродного материала (иммуногена) и активируют B-клетки к синтезу иммуноглобулинов. На втором уровне, после стимуляции B-клеток к выработке иммуноглобулинов, T-клетки начинают расщеплять и разрушать чужеродный материал напрямую.

Такая активированная T-клетка уничтожает вредоносную клетку, сталкиваясь и прикрепляясь к ней вплотную – поэтому их стали называть клетками-убийцами или T-киллерами.

Клеточный иммунитет

Клеточная иммунная защита была открыта И.И. Мечниковым в конце XIX века. Он доказал, что защита организма от заражения микроорганизмами происходит благодаря способности особых клеток крови прикрепляться и расщеплять вредоносные микроорганизмы.

Этот процесс назвали фагоцитозом, а клеток-убийц, выслеживающих чужеродные микроорганизмы – фагоцитами. Синтез иммуноглобулинов и процесс фагоцитоза являются специфическими факторами иммунитета человека.

Неспецифический иммунитет

Помимо специфических, имеются неспецифические факторы иммунитета. Среди них:
непропускание возбудителей инфекции эпителием;
присутствие в кожных выделениях и желудочном соке веществ, негативно воздействующих на инфекционные агенты;
наличие в плазме крови, слюне, слезах и т.д. особых энзимных систем, расщепляющих бактерий и вирусов (например, мурамидаза).

Защита организма осуществляется не только разрушением внедряющегося в него генетически чужеродного материала, но и выведением из органов и тканей уже локализовавшихся в них иммуногенов. Известно, что вирусы , бактерии и отходы их жизнедеятельности, а также погибшие бактерии транспортируются наружу через потовые железы, мочевыделительную систему и кишечник.

Еще одним неспецифическим механизмом защиты служит интерферон – антивирусная белковая структура, синтезируемая инфицированной клеткой. Перемещаясь по внеклеточному матриксу и попадая в здоровые клетки, этот белок защищает клетку от вируса и от системы комплемента – комплекса белков, постоянно присутствующих в плазме крови и других жидкостях организма, которые уничтожают клетки, содержащие чужеродный материал.

Защита организма ослабевает чаще всего из-за несоблюдения