Примеры заключения по вариабельности ритма сердца. Вариабельность сердечного ритма: физиологические механизмы, методы исследования, клиническое и прогностическое значение

35920 0

Исследование вариабельности сердечного ритма (ВСР) было начато в 1965 г., когда исследователи Hon и Lee отметили, что состоянию дистресса плода предшествовала альтернация интервалов между сердечными сокращениями до того, как произошли какие-либо различимые изменения в сердечном ритме. Только 12 лет спустя Wolf и соавторы выявили взаимосвязь большего риска смерти у больных, перенесших ИМ со сниженной ВСР. Результаты Фремингемского исследования на протяжении 4-летнего наблюдения (736 лиц пожилого возраста) убедительно доказали, что ВСР содержит независимую и находящуюся за пределами традиционных факторов риска прогностическую информацию. В 1981 г. Akselrod с коллегами использовали спектральный анализ колебаний сердечного ритма для количественного определения показателей сердечнососудистой системы от систолы к систоле.

В 1996 г. рабочая группа экспертов Европейского общества кардиологов и Североамериканского общества кардиостимуляции и электрофизиологии разработала стандарты использования показателей ВСР в клинической практике и кардиологических исследованиях, в соответствии с которыми сейчас выполняется большинство исследований. Для определения ВСР рекомендуется использовать ряд методов, обеспечивающих наиболее полный анализ при минимальных затратах методов и времени. Кроме рекомендаций относительно выбора метода оценки ВСР, в документе приведены требования к процедуре измерения всех параметров, влияющих на определение ВСР.

Определение ВСР, основные области применения метода, показания к использованию

ВCР — это естественные изменения интервалов между сердечными сокращениями (длительности кардиоцик лов) нормального синусового ритма сердца. Их называют NN-интервалами (Norman to Norman). Последовательный ряд кардиоинтервалов не является набором случайных чисел, а имеет сложную структуру, что отражает регуляторное влияние на синусный узел сердца вегетативной нервной системы и различных гуморальных факторов. Поэтому анализ структуры ВСР дает важную информацию о состоянии вегетативной регуляции сердечно-сосудистой системы и организма в целом.

Сердечные центры продолговатого мозга и моста непосредственно управляют деятельностью сердца, оказывая хронотропный, инотропный и дромотропный эффекты. Передатчиками нервных влияний на сердце служат химические медиаторы: ацетилхолин в парасимпатической и норадреналин - в симпатической нервной системе.

1. Оценка функционального состояния организма и его изменений на основе определения параметров вегетативного баланса и нейрогуморальной регуляции.

2. Оценка выраженности адаптационного ответа организма при воздействии различных стрессов.

3. Оценка состояния отдельных звеньев вегетативной регуляции кровообращения.

4. Разработка прогностических заключений на основе оценки текущего функционального состояния организма, выраженности его адаптационных ответов и состояния отдельных звеньев регуляторного механизма.

Практическая реализация указанных направлений открывает широкое поле деятельности как для ученых, так и для практиков. Далее предлагается ориентировочный и весьма неполный перечень областей использования методов анализа ВСР и показаний к их применению, составленный на основе анализа современных отечественных и зарубежных публикаций.

Перечень областей использования методов анализа ВСР:

1. Оценка вегетативной регуляции ритма сердца у практически здоровых людей (исход ный уровень вегетативной регуляции, вегетативная реактивность, вегетативное обеспечение деятельности).

2. Оценка вегетативной регуляции ритма сердца у пациентов с различной патологией (изменение вегетативного баланса, степень преобладания одного из отделов вегетативной нервной системы). Получение дополнительной информации для диагностики некоторых форм заболеваний, например, автономной нейропатии при диабете.

3. Оценка функционального состояния регуляторных систем организма на основе интегрального подхода к системе кровообращения как к индикатору адаптационной деятельности всего организма.

4. Определение типа вегетативной регуляции (ваго-, нормо- или симпатикотония).

5. Прогноз риска внезапной смерти и фатальных аритмий при ИМ и ИБС у больных с желудочковыми нарушениями ритма, при ХСН, обусловленной АГ, кардиомиопатией.

6. Выделение групп риска по развитию угрожаю щей жизни повышенной стабильности сердечного ритма.

7. Использование в качестве контрольного метода при проведении различных функциональных проб.

8. Оценка эффективности лечебно-профилактических и оздоровительных мероприятий.

9. Оценка уровня стресса, степени напряжения регуляторных систем при экстремальных и суб экстремальных воздействиях на организм.

10. Использование в качестве метода оценки функциональных состояний при массовых профилактических обследованиях различных контингентов населения.

11. Прогнозирование функционального состояния (устойчивости организма) при проведении профотбора и определении профпригодности.

12. Выбор оптимальной медикаментозной терапии с учетом фона вегетативной регуляции сердца. Контроль эффективности проводимой терапии, коррекция дозы препарата.

13. Оценка и прогнозирование психических реакций по выраженности вегетативного фона.

14. Контроль функционального состояния в спорте.

15. Оценка вегетативной регуляции в процессе развития у детей и подростков. Применение в качестве контрольного метода в школьной медицине для социально-педагогических и медико-психологических исследований.

Представленный перечень не является исчерпывающим и может быть дополнен.

Причины ВСР

ВСР имеет внешнее и внутреннее происхождение. К внешним причинам относят изменение положения тела в пространстве, физическую нагрузку, психоэмоциональный стресс, температуру окружающей среды.

Денервированное сердце сокращается практически с постоянной частотой. Как отмечалось выше, лабильность ЧСС обусловлена вегетативным влиянием на синусный узел. Симпатические импульсы ускоряют ритм сердца, а парасимпатические замедляют. Основная цель регуляции ЧСС - стабилизация АД. Регулируется с помощью барорефлекторного механизма, являющегося самым быстрым механизмом регуляции АД с латентным периодом около 1-2 с. Кроме вегетативных воздействий на сердце, изменения ЧСС вызывают и гуморальные факторы. Колебанием концентрации в крови адреналина и других гуморальных агентов объясняют происхождение очень медленных волн сердечного ритма (<0,04 Гц).

Механизм изменений ЧСС при дыхании связан с функционированием барорефлекторной системы стабилизации АД. Экскурсии грудной клетки и диафрагмы при дыхании приводят к колебаниям давления в грудной полости, что является возбуждающим воздействием на систему стабилизации АД. Как известно, сердечный выброс уменьшается на вдохе и увеличивается на выдохе вследствие изменения притока крови к сердцу при изменении давления в грудной полости. Это вызывает колебания АД. Непосредственное влияние на частоту сердечного ритма оказывает изменение тонуса блуждающего нерва. На вдохе происходит снижение тонуса блуждающего нерва и кардиоинтервалы сокращаются. При этом чем сильнее вагусная депрессия синусного узла, тем значительнее колебания ЧСС при дыхании. Это подтверждается тем, что атропиновая блокада блуждающего нерва приводит к резкому снижению амплитуды дыхательных волн сердечного ритма.

Известно, что при увеличении объема крови и повышении давления в крупных венах происходит повышение ЧСС несмотря на сопутствующее повышение АД - так называемый рефлекс Бейнбриджа. Этот рефлекс преобладает над барорецепторным рефлексом при увеличении ОЦК и, наоборот, уменьшение объема крови приводит к уменьшению МОК и АД, при этом отмечают повышение ЧСС.

Особое влияние на ВСР оказывает легочная вентиляция: стимуляция хеморецепторов вызывает умеренную гипервентиляцию, со стороны сердца при этом выявляют брадикардию и, наоборот, при значительной гипервентиляции ЧСС обычно возрастает.

Методы исследования ВСР

Соответственно международным стандартам ВСР исследуют двумя методами:

1) регистрация R–R-интервалов в течение 5 мин;

2) регистрация R–R-интервалов в течение суток. Краткосрочную запись чаще используют для экспресс-оценки ВСР и проведения различных функциональных и медикаментозных проб. Для более точной оценки ВСР и исследования циркадных ритмов вегетативной регуляции используют метод суточной регистрации R–R-интервалов. Однако и при суточной регистрации расчет большинства показателей ВСР проводится по каждому последовательному 5-минутному периоду. Это связано с тем, что для спектрального анализа необходимо использовать только стационарные отрезки ЭКГ, а чем длительней запись, тем чаще встречаются нестационарные процессы.

Для оценки высокочастотного компонента (HF) ритма сердца необходима запись около 1 мин, тогда как для анализа низкочастотного компонента (LF) необходимо уже 2 мин записи. Для объективной оценки очень низкочастотного компонента ВСР (VLF) длительность записи должна быть не менее 5 мин. Поэтому для стандартизации исследований ВСР при коротких записях выбрана предпочтительная длительность записи 5 мин.

Требования к краткосрочной записи ЭКГ для анализа ВСР

К исследованию необходимо приступать не ранее чем через 1,5–2 ч после приема пищи. Исследования проводят в затемненной комнате, за 12 ч необходимо отменить прием лекарственных средств, употребление кофе, алкоголя, физические и психические нагрузки. Запись регистрируют в промежутке с 9:00 до 12:00 в комфортных условиях при температуре воздуха 20–22 °С. Перед началом исследования необходим период адаптации к окружающим условиям в течение 5–10 мин. Исследование у женщин следует проводить с учетом фаз менструального цикла. Необходимо устранить все раздражающие влияния: отключить телефон, прекратить разговоры с пациентом, исключить появление в кабинете других лиц, включая медработников. Стартовое исследование проводится в положении лежа на спине или сидя с опорой на спинку стула.

Протоколы коротких записей обычно включают пробы с модуляцией дыхания: задержка дыхания с определенной частотой и глубиной; соотношение продолжительности фаз вдоха и выдоха; активный и пассивный ортостатический тесты; ручная динамометрия; вегетативные пробы (Вальсальвы, с задержкой дыхания, массаж каротидного синуса, надавливание на глазные яблоки, холодовые пробы с охлаждением лица, кистей рук и стоп); фармакологические пробы; ментальные пробы (арифметические упражнения, музыка); различные комбинации протоколов.

При суточной регистрации ЭКГ значительное влияние на анализ ВСР оказывают циркадные колебания (день - ночь) ритма сердца. Кроме того, на ВСР при этом значительно влияют такие факторы, как физическая активность пациента, различные стрессовые влияния, прием пищи, сон. Поэтому при суточном мониторировании ЭКГ необходимо вести протокол действий больного и различных факторов, влияющих на ритм сердца. При патологии необходимо определять время воздействия и выраженность различных симптомов, особенно болевых ощущений.

Эктопические сокращения, эпизоды аритмии, шумовые помехи и другие артефакты значительно снижают возможности спектрального анализа для определения состояния вегетативной регуляции функции сердца. Перед расчетом показателей ВСР необходимо удалить с записи ЭКГ артефакты и экстрасистолы. Это возможно, когда их относительное количество невелико - не более 10% всех R–R-интервалов. Артефактами принято считать R–R-интервалы, длительность которых превышает среднее значение более чем на 2 стандартных отклонения.

Методы анализа и определяемые показатели

Характеристики ВСР могут быть определены с помощью множества различных способов, каждый из которых отражает одну из сторон исследуемого явления. Обычно выделяют такие группы методов:

1) временной области (статистические и геометрические);

2) частотной области;

3) автокорреляционный анализ;

4) нелинейные;

5) независимых компонентов;

6) математическое моделирование.

Методы временной области

Исследование ВСР методом временной области включает анализ следующих показателей: SDNN - стандартное отклонение N–N- интервалов;

SDANN - стандартное отклонение средних значений SDNN из 5 (10)-минутных сегментов для средней длительности, многочасовых или 24-часовых записей;

RMSSD - квадратный корень из суммы квадратов разности величин последовательных пар N–N-интервалов;

NN50 - количество пар последовательных N–N-интервалов за весь период записи, различающихся более чем на 50 мс;

PNN50 - доля NN50 общего количества последовательных пар N–N-интервалов, различающихся более чем на 50 мс, полученного за весь период записи.

Как указывалось выше, для количественной оценки ВСР за длительный период используют также геометрический метод. Все интервалы N–N за 24 ч представляют в виде гистограммы и затем по ней производят расчеты геометрических показателей.

Наиболее часто используют триангулярный индекс ВСР (HVR index) и показатель триангулярной интерполяции гистограммы N–N (TINN). Оба показателя малочувствительны к разного рода ошибкам, возникающим при подразделении комплексов QRS на нормальные и ненормальные. Тем самым снижаются требования к качеству записи ЭКГ и ее анализу. Характеристика временных показателей представлена в табл. 4.1.

Таблица 4.1

Методы частотной области

В спектре коротких записей (от 2 до 5 мин) принято выделять 5 главных спектральных компонентов:

TH - общая мощность спектра;

VLF - очень низкие частоты в диапазоне менее 0,04 Гц;

LF - низкие частоты в диапазоне 0,04–0,15 Гц;

HF - высокие частоты в диапазоне 0,15– 0,4 Гц;

LF/HF - соотношение LF к HF.

Характеристика и определение всех спектральных показателей представлены в табл. 4.2.

Таблица 4.3

В табл. 4.3 представлены соответствия между временными и спектральными показателями ВСР.

Автокорреляционный анализ

Вычисляется автокорреляционная функция ряда R–R-интервалов, представляющая собой график коэффициентов корреляции, получаемых при его последовательном смещении на один R–R-интервал по отношению к своему собственному ряду. После первого сдвига на одно значение коэффициент корреляции настолько меньше единицы, насколько более выражены высокочастотные волны. Если в выборке доминируют медленноволновые компоненты, то коэффициент корреляции после первого сдвига незначительно меньше единицы. Последующие сдвиги ведут к постепенному уменьшению корреляционных коэффициентов. Поскольку автокорреляционная функция и спектр процесса связаны парой преобразований Фурье, использование автокорреляционного или спектрального анализа - выбор исследователя (табл. 4.4).

Методы нелинейного анализа

Многообразные влияния на ВСР, включая механизмы высших вегетативных центров, обусловливают нелинейный характер изменений сердечного ритма, для описания которого требуется использование специальных методов. Однако применение нелинейного анализа в клинической практике ограничено в связи с рядом факторов:

1) сложность как с точки зрения структурного анализа, так и с точки зрения вычислительных алгоритмов;

2) невозможность применения коротких протоколов и необходимость использования только длинных записей для анализа;

Таблица 4.4

3) отсутствие накопленной физиологической базы интерпретации результатов нелинейного анализа.

Таблица 4.5

Метод анализа независимых компонентов

Поскольку определение частотных полос VLF, LF и HF при спектральном анализе ВСР достаточно условны, более правильным является разделение общей ВСР на независимые компоненты, обусловленные различными механизмами систем регуляции. Этот метод относится к нелинейным методам статистического анализа, не требует длительной записи ВСР.

Метод математического моделирования

Метод вплотную примыкает к методу анализа независимых компонентов по направленности на предварительную обработку исходного сигнала ВСР с последующим применением методов частотной области и нелинейного анализа. Метод основывается на физиологических описаниях функционирования автономной нервной системы.

Для интерпретации результатов анализа ВСР можно использовать данные о физиологических коррелятах показателей ВСР, представленные в табл. 4.6.

Таблица 4.6

ВСР у здоровых людей

ВСР у здоровых людей позволяет оценить их физиологические нормативы, определяющиеся половой принадлежностью, возрастом, положением тела в пространстве, температурой окружающей среды, психическим комфортом, временем суток, сезонностью и другими факторами.

Показатели ВСР отличаются высокой индивидуальностью, а о нарушении регуляции говорят, когда показатели выходят за пределы значений индивидуальной нормы. Половых различий у ВСР нет, хотя у женщин ЧСС выше.

С возрастом связано снижение общей мощности спектра ВСР за счет преобладающего снижения низко- (LF) и высокочастотного (HF) компонента. Поскольку снижение LF и HF происходит синхронно, то отношение LF/HF изменяется мало. Наиболее высокая мощность спектра в детском и юношеском возрасте. С возрастом реакция на модуляцию дыхания снижается, но его связывают с физиологической детренированностью (табл. 4.7).

Масса тела также влияет на ВСР: меньшая масса тела проявляется более высокой мощностью спектра ВСР и HF, а у тучных людей отмечают обратную зависимость. Суточные (циркадные) колебания ВСР проявляются большей мощностью спектра, VLF и LF в дневное время и меньшей ночью при одновременном росте HF. Этот показатель повышается до максимума в ранние утренние часы, тогда как VLF либо не изменяется, либо снижается.

Физические упражнения и спорт приводят к положительным изменениям ВСР: урежается ЧСС, мощность спектра ВСР возрастает за счет HF. Избыточные тренировки чреваты повышением ЧСС и снижением ВСР. Этим отчасти объясняется выявляемая чаще в профессиональном спорте и связанная с чрезмерными нагрузками внезапная смерть.

Частота, глубина и ритм дыхания оказывают существенное влияние на ВСР, с повышением частоты дыхания относительный вклад HF в ВСР уменьшается и отношение LF/HF увеличивается. Пробы Вальсальвы с глубоким дыханием повышают мощность спектра ВСР. Ритмичное дыхание повышает мощность спектра за счет HF.

Нормальные значения временных и спектральных показателей сердечного ритма в зависимости от возраста приведены в табл. 4.7.

Различия в значениях показателей ВСР отмечают также в периоды сна и бодрствования. В табл. 4.8 представлены показатели ВСР у здоровых людей в периоды сна и бодрствования.

Таблица 4.7

*Различия с соответствующим периодом суток группы 20–39 лет достоверны (p<0,05).


Таблица 4.8

*Различия по сравнению с периодом бодрствования достоверны (р<0,05).

Клиническая оценка показателей ВСР при различных патологических состояниях

Организованная и сбалансированная регуляция - залог качественного здоровья, повышает шансы больного на выздоровление или ремиссию. Реакция регуляторных систем на раздражители неспецифична, но высокочувствительна, и соответственно метод анализа ВСР неспецифичен, но высокочувствителен при самых разных физиологических и патологических состояниях. Однако не следует искать показатели и значения ВСР, присущие конкретным состояниям или нозологическим формам. Учитывая вышесказанное, нам представилось интересным рассмотреть некоторые особенности, выявляемые при анализе показателей ВСР при различных патологических состояниях.

Нестабильная стенокардия

У больных с нестабильной стенокардией выявляют значительное снижение показателей вариабельности сердечного ритма при суточном мониторировании ЭКГ (SDNN, SDANN, SDNNi, RMSSD, PNN50). Снижение показателей ВСР коррелирует со снижением сегмента ST на ЭКГ. Риск неблагоприятных событий (развитие ИМ, внезапной смерти) на протяжении месяца в 8 раз выше при значениях SDANN <70 мс.

ИМ

ИМ характеризуется значительным снижением показателей ВСР при суточном мониторировании ЭКГ по сравнению с ХСН. Снижение ВСР в острой фазе ИМ коррелирует с дисфункцией желудочков, пиковой концентрацией креатинфосфокиназы, выраженностью ОСН. Обоснование изменений, отмечаемых при этой патологии, исследователи видят в нарушении соотношения между симпатическим и парасимпатическим отделами нервной системы. В острый период выявляют повышение тонуса симпатической (LF) и снижение тонуса парасимпатической (HF) нервной системы. Симпатические влияния на миокард снижают порог фибрилляции, парасимпатические имеют защитный характер, повышая порог. Увеличение соотношения LF/HF определяют на протяжении 1 мес пос ле ИМ. Значительное снижение ВСР при ИМ является независимым и высокоинформативным предиктором желудочковой тахикардии, фибрилляции желудочков, внезапной смерти.

Спектральный анализ ВСР у пациентов, перенесших ИМ, выявляет снижение общей мощности спектра и его компонент. В исследовании Североамериканской группы по изучению ВСР наблюдали больных с ИМ. Было установлено, что низкие показатели ВСР при суточном мониторировании ЭКГ коррелируют с риском внезапной смерти более выражено, чем показатели ФВ, количество желудочковых экстрасистол и толерантность к физическим нагрузкам. Выделены значения мощности спектра в различных частотных диапазонах, связанных с неблагоприятным прогнозом заболевания: общая мощность спектра менее 2000 мс 2 , ULF <1600 мс 2 , VLF <180 мс 2 , LF <35 мс 2 , HF <20 мс 2 и отношение LF/HF <0,95. Низкая мощность в диапазоне VLF в большей степени, чем другие показатели, связана с возникновением внезапной аритмической смерти. Пограничными значениями выраженного снижения ВСР при оценке на протяжении 24 ч рекомендуется считать SDNN <50 мс и триангулярный индекс ВСР <15, а для умеренного снижения ВСР - SDNN <100 мс и триангулярный индекс ВСР <20.

В 1996 г. представлены результаты исследования GISSI-2, длившегося 1 тыс. дней (567 пациентов). К концу срока наблюдения умерли 52 человека, что составило 9,1%. Исследователями установлено, что при снижении PNN50 риск смерти возрастал в 3,5 раза, при уменьшении SDNN - в 3 раза, при повышении RMSSD повышается в 2,8 раза.

СН

У больных с СН выявляют значительное снижение ВСР, что обусловлено активацией симпатического отдела нервной системы и тахикардией. Изменение параметров временного анализа ВСР достоверно коррелирует с выраженностью заболевания, однако изменение параметров спектрального анализа не настолько однозначно. В исследовании зависимости между активностью парасимпатических влияний на сердце у больных с ХСН и функцией ЛЖ установлено, что степень снижения ВСР достоверно связана с ФВ. Таким образом снижение парасимпатической регуляции отражает тяжесть систолической дисфункции.

ГКМП

При ГКМП отмечают снижение общей ВСР и ее парасимпатического компонента. У больных с этой патологией ночью снижается значение LF и HF и отмечается высокий показатель LF/HF по сравнению со здоровыми. При этом наиболее выраженные значения компонента HF выявлены у больных с пароксизмами желудочковой тахикардии.

Диабетическая полинейропатия

Изменения ВСР являются ранним (субклиническим) признаком полинейропатии, что позволяет выявить это состояние еще до манифестации клинических признаков. При диабетической полинейропатии отмечают снижение мощности всех спектральных компонентов, отсутствие увеличения LF при ортостатической пробе, «нормальное» соотношение LF/HF, сдвиг влево центральной частоты компонента LF.

Нарушения ритма сердца

Отражая соотношение симпатической и парасимпатической регуляции, ВСР позволяет судить о риске возникновения опасных для жизни аритмий. Возникновению опасных для жизни желудочковых нарушений ритма, по данным J.O. Valkama, предшествует повышение общей мощности спектра прежде всего за счет его низкочастотного компонента.

В 1991 г. Farell с соавторами предоставил данные исследования ВСР у 416 пациентов с нарушениями ритма. Конечной точкой исследования было возникновение стойкой желудочковой тахикардии или фибрилляции желудочков. Установлено, что при сочетании SDNN <20 мс и желудочковой экстрасистолии более 10 в час чувствительность метода составляет 50%, а специфичность - 94%.

Антиаритмические препараты могут воздействовать на ВСР различными путями. В эксперименте показано, что гемодинамическим следствием желудочковых нарушений ритма является изменение желудочковой эфферентной активности. Следовательно, само по себе подавление аритмий может изменять показатели ВСР. В табл. 4.9 суммированы воздействия антиаритмических препаратов на ВСР.

Таблица 4.9

Заключение

Исследование ВСР является неинвазивным, чувствительным и специфичным методом диагностики дисфункции миокарда, способом оценки эффекта медикаментозной терапии. Анализ показателей ВСР позволяет выделить группу больных с высоким риском возникновения внезапной сердечной смерти, а также прогнозировать развитие заболевания.


О.С. Сычев, О.И. Жаринов "Вариабельность сердечного ритма: физиологические механизмы, методы исследования, клиническое и прогностическое значение"

Анализ вариабельности сердечного ритма (ВСР) является быстро развивающимся разделом кардиологии, в котором наиболее полно реализуются возможности вычислительных методов. Это направление во многом инициировано пионерскими работами известного отечественного исследователя Р.М. Баевского в области космической медицины, который впервые ввел в практику ряд комплексных показателей, характеризующих функционирование различных регуляторных систем организма. В настоящее время стандартизация в области ВСР осуществляется рабочей группой Европейского кардиологического общества и Северо-американского общества стимуляции и электрофизиологии.

Cердце в идеале способно реагировать на малейшие изменения в потребностях многочисленных органов и систем. Вариационный анализ ритма сердца дает возможность количественной и дифференцированной оценки степени напряженности или тонуса симпатического и парасимпатического отделов ВНС, их взаимодействия в различных функциональных состояниях, а также деятельности подсистем, управляющих работой различных органов. Поэтому программа-максимум этого направления состоит в разработки вычислительно-аналитических методов комплексной диагностики организма по динамике сердечного ритма.

Методы ВСР не предназначены для диагностики клинических патологий, где, как мы видели выше, хорошо работают традиционные средства визуального и измерительного анализа. Преимущество данного раздела состоит в возможности обнаружить тончайшие отклонения в сердечной деятельности, поэтому его методы особенно эффективны для оценки общих функциональных возможностей организма в норме, а также ранних отклонений, которые в отсутствие необходимых профилактических процедур постепенно могут развиться в серьезные заболевания. Методика ВСР широко используется и во многих самостоятельных практических приложениях, в частности, в холтеровском мониторинге и при оценке тренированности спортсменов, а также в других профессиях, связанных с повышенными физическими и психологическими нагрузками (см. в конце раздела).

Исходными материалом для анализа ВСР являются непродолжительные одноканальные записи ЭКГ (от двух до нескольких десятков минут), выполняемые в спокойном, расслабленном состоянии или при функциональных пробах. На первом этапе по такой записи вычисляются последовательные кардиоинтервалы (КИ), в качестве реперных (граничных) точек которых используются R-зубцы, как наиболее выраженные и стабильные компоненты ЭКГ.

Методы анализа ВСР обычно группируются в следующие четыре основные раздела:

  • интервалография;
  • вариационная пульсометрия;
  • спектральный анализ;
  • корреляционая ритмография.

Другие методы. Для анализа ВСР используется и ряд менее употребительных методов, связанных с построением трехмерных скаттерграмм, дифференциальных гистограмм, вычислением автокорреляционных функций, триангуляционной интерполяции, вычислением индекса Святого Георга . В оценочном и диагностическом планах эти методы можно охарактеризовать как научно-поисковые, и они практически не привносят принципиально новой информации.

Холтеровский мониториг. Длительное мониторирование ЭКГ по Холтеру предполагает многочасовую или многосуточную одноканальную непрерывную запись ЭКГ пациента, находящегося в своих обычных жизненных условиях. Запись осуществляется портативным носимым регистратором на магнитный носитель. В связи с большой временной продолжительностью последующее исследование ЭКГ-записи осуществляется вычислительными методами. При этом обычно строится интервалограмма, определяются участки резкого изменения ритмики, ищутся экстрасистолические сокращения и асистолические паузы с подсчетом их общего количества и классификацией экстрасистол по форме и локализации.

Интервалография В этом разделе преимущественно используются методы визуального анализа графиков изменения последовательных КИ (интервалограмма или ритмограмма). Это позволяет оценить выраженность различных ритмов (в первую очередь - дыхательного ритма, см. рис. 6.11) выявить нарушения вариабельности КИ (см. рис. 6.16, 6.18, 6.19), асистолии и экстрасистолии. Так на рис. 6.21 приведена интервалограмма с тремя пропусками сердечных сокращений (три удлиненных КИ в правой части), сменяющимися экстрасистолой (укороченный КИ), за которой сразу следует четвертый пропуск сердечного сокращения.

Рис. 6.11. Интервалограмма глубокого дыхания

Рис. 6.16. Интервалограмма фибрилляции

Рис. 6.19. Интервалограмма пациента с нормальным самочувствием, но с явными нарушениями в ВСР

Интервалограмма позволяет выявить важные индивидуальные особенности действия регуляторных механизмов в реакциях на физиологические пробы. В качестве показательного примера рассмотрим противоположные типы реакций на пробу задержки дыхания. Рис. 6.22 демонстрирует реакции ускорения ЧСС при задержке дыхания. Однако у испытуемого (рис. 6.22, а) после начального резкого спада наступает стабилизация с тенденцией к некоторому удлинению КИ, в то время как у испытуемого (рис. 6.22, б) начальный резкий спад продолжается более медленным укорочением КИ, при этом проявляются нарушения вариабельности КИ с дискретным характером их чередования (что для данного испытуемого не проявлялось в состоянии релаксации). Рисунок 6.23 представляет реакции противоположного характера с удлинением КИ. Однако, если для испытуемого (рис. 6.23, а) имеет место близкая к линейной возрастающая тенденция, то для испытуемого (рис. 23, б) в этой тенденция проявляется высокоамплитудная медленноволновая активность.

Рис. 6.23. Интервалограммы для проб задержки дыхания с удлинением КИ

Вариационная пульсометрия В этом разделе преимущественно используются средства описательной статистики для оценки распределения КИ с построением гистограммы, а также ряд производных показателей, характеризующих функционирование различных регуляторных систем организма, и специальных международных индексов. Для многих из этих индексов на большом экспериментальном материале определены клинические границы нормы в зависимости от пола и возраста, а также ряд последующих числовых интервалов, отвечающих дисфункциям той или иной степени.

Гистограмма. Напомним, что гистограмма представляет собой график плотности вероятности выборочного распределения. В данном случае высота конкретного столбика выражает процент присутствующих в записи ЭКГ кардиоинтервалов заданного диапазона длительности. Горизонтальная шкала длительностей КИ для этого разбивается на последовательные интервалы равной величины (бины). Для сравнимости гистограмм международный стандарт устанавливает размер бина равным 50 мс.

Нормальная сердечная деятельность характеризуется симметричной, куполообразной и цельной гистограммой (рис. 6.24). При релаксации с неглубоким дыханием гистограмма сужается, при углублении дыхания - уширяется. При наличии пропусков сокращений или экстрасистол на гистограмме появляются отдельно стоящие фрагменты (соответственно, справа или слева от основного пика, рис. 6.25). Несимметричная форма гистограммы свидетельствует об аритмичном характере ЭКГ. Пример такой гистограммы приведен на рис. 6.26, а. Для выяснения причин такой асимметрии бывает полезно обратиться к интервалограмме (рис. 6.26, б), которая в данном случае показывает, что асимметрия определена скорее не патологической аритмией, а наличием нескольких эпизодов смены нормальной ритмики, которые могут быть вызваны эмоциональными причинами или же сменами глубины и частоты дыхания.

Рис. 6.24. Симметричная гистограмма

Рис. 6.25. Гистограмма с пропусками сокращений

а - гистограмма; б - интервалограмма

Показатели. Кроме гистографического представления в вариационной пульсометрии вычисляется и целый ряд числовых оценок: описательная статистика, показатели Баевского, индексы Каплана и ряд других.

Показатели описательной статистики дополнительно характеризуют распределение КИ:

  • размер выборки N;
  • вариационный размах dRR - разность меду максимальным и минимальным КИ;
  • среднее значение RRNN (норма в перерасчете на ЧСС составляет: 64±2,6 для возрастов 19-26 лет и 74±4,1 для возрастов 31-49 лет);
  • стандартное отклонение SDNN (норма 91±29);
  • коэффициент вариации CV=SDNN/RRNN*100%;
  • коэффициенты асимметрии и эксцесса, характеризующие симметричность гистограммы и выраженность ее центрального пика;
  • мода Mo или значение КИ, делящее всю выборку пополам, при симметричном распределении мода близка к среднему значению;
  • амплитуда моды AMo - процент КИ, попадающих в модальный бин.
  • RMSSD - корень квадратный из средней суммы квадратов разностей соседних КИ (практически совпадает со стандартным отклонением SDSD, норма 33±17), имеет устойчивые статистические свойства, что особенно актуально для коротких записей;
  • pNN50 - процент соседних кардиоинтервалов, отличающихся друг от друга более чем на 50 мс (норма 7±2%), также мало изменятся в зависимости от длины записи.

Показатели dRR, RRNN, SDNN, Mo выражаются в мс. Наиболее значимым считается AМo, отличающаяся устойчивостью к артефактам и чувствительностью к изменению функционального состояния. В норме у людей до 25 лет AМo не превышает 40%, с возрастом увеличивается на 1% каждые 5 лет, превышение 50% расценивается как патология.

Показатели Р.М. Баевского :

  • индекс вегетативного равновесия ИВР=AMo/dRR указывает на соотношение между активностью симпатического и парасимпатического отделов ВНС;
  • вегетативный показатель ритма ВПР=1/(Mo*dRR) позволяет судить о вегетативном балансе организма;
  • показатель адекватности процессов регуляции ПАПР=AMo/Mo отражает соответствие между активностью сипатического отдела ВНС и ведущим уровнем синусового узла;
  • индекс напряжения регуляторных систем ИН=AMo/(2*dRR*Mo) отражает степень централизации управления сердечным ритмом.

Наиболее значимым в практике является индекс ИН, адекватно отражающий суммарный эффект сердечной регуляции. Границы нормы составляют: 62,3±39,1 для возрастов 19-26 лет. Показатель чувствителен к усилению тонуса симпатической ВНС, небольшая нагрузка (физическая или эмоциональная) увеличивает его в 1,5-2 раза, при значительных нагрузках рост составляет 5-10 раз.

Индексы А.Я. Каплана. Разработка этих индексов преследовала задачу оценки медленно и быстроволновых компонентов вариабельности КИ без привлечения сложных методов спектрального анализа:

  • индекс дыхательной модуляции (ИДМ) оценивает степень влияния дыхательного ритма на вариабельность КИ:
  • ИДМ=(0,5* RMSSD/RRNN)*100%;
  • индекс симпато-адреналового тонуса: САТ=АМо/ИДМ*100%;
  • индекс медленноволновой аритмии: ИМА=(1-0,5*ИДМ/CV)*100%-30
  • индекс перенапряжения регуляторных систем ИПС представляет собой произведение САТ на отношение измеренного времени распространения пульсовой волны к времени распространения в состоянии покоя, диапазон значений:

40-300 - рабочее нервно–психическое напряжение;

900-3000 - перенапряжение, необходимость отдыха;

3000-10000 - перенапряжение, опасное для здоровья;

свыше- необходимость срочного выхода из текущего состояния с обращением к врачу–кардиологу.

Индекс САТ в отличие от ИН учитывает только быстрый компонент вариативности КИ, так как содержит в знаменателе не суммарный размах КИ, а нормированную оценку изменчивости между последовательными КИ - ИДМ. Таким образом, чем меньше вклад высокочастотного (дыхательного) компонента ритма сердца в суммарную вариативность КИ, тем выше индекс САТ. Он очень эффективен для общей предварительной оценки сердечной деятельности в зависимости от возраста, границы нормы составляют: 30-80 до 27 лет, 80-250 от 28 до 40 лет, 250-450 от 40 до 60 лет, и 450-800 для старших возрастов. Вычисление САТ производят на 1-2 минутных интервалах в спокойном состоянии, выход за верхнюю возрастную границу нормы является признаком нарушений в сердечной деятельности, а выход за нижнюю границу - благоприятным признаком.

Естественным дополнением САТ является ИМА, который прямо пропорционален дисперсии КИ, но не суммарной, а оставшейся за вычетом быстрого компонента вариативности КИ. Границы нормы ИМА составляют: 29,2±13,1 для возрастов 19-26 лет.

Индексы оценки отклонений в вариабельности. Большинство рассмотренных показателей являются интегральными, поскольку вычисляются на достаточно протяженных последовательностях КИ, при этом ориентированы именно на оценку средней вариабельности КИ и чувствительны к различиям в таких средних значениях. Эти интегральные оценки сглаживают локальные вариативности и хорошо работают в условиях стационарности функционального состояния, например, при релаксации. В то же время интересно было бы иметь и другие оценки, которые бы: а) хорошо работали и в условиях функциональных проб, т. е. когда сердечный ритм не стационарен, а имеет заметную динамику, например, в виде тренда; б) были чувствительные именно к крайним отклонениям, связанным с малой или повышенной вариабельностью КИ. Действительно, многие незначительные, ранние отклонения в сердечной деятельности не проявляются в покое, но могут быть выявлены в ходе функциональных проб, связанных с повышенной физиологической или психической нагрузкой.

В этом плане имеет смысл предложить один из возможных альтернативных подходов, позволяющий конструировать показатели ВСР, которые, в отличие от традиционных, можно было бы назвать дифференциальными или интервальными. Такие показатели вычисляются в коротком скользящем окне с последующим усреднением по всей последовательности КИ. Ширину скользящего окна можно выбрать порядка 10 сердечных сокращений, исходя из следующих трех соображений: 1) это соответствует трем-четырем дыханиям, что в определенной степени позволяет нивелировать ведущее влияние дыхательного ритма; 2) на таком сравнительно коротком отрезке сердечный ритм можно считать условно стационарным даже в условиях нагрузочных функциональных проб; 3) такой размер выборки обеспечивает удовлетворительную статистическую устойчивость числовых оценок и применимость параметрических критериев.

В рамках предложенного подхода нами были сконструированы два оценочных индекса: показатель сердечного стресса ПСС и показатель сердечной аритмии ПСА. Как показало дополнительное исследование, умеренное увеличение ширины скользящего окна немного снижает чувствительность этих индексов и расширяет границы нормы, но эти изменения не носят принципиального характера.

Индекс ПСС предназначен для оценки «плохой» вариабельности КИ, выражающейся в присутствии КИ одинаковой или очень близкой длительности с различием до 5 мс (примеры таких отклонений приведены на рис. 6.16, 6.18, 6.19). Такой уровень «нечувствительности» выбран из двух соображений: а) он достаточно мал, составляя 10% от стандартного 50 мс бина: б) он достаточно велик, чтобы обеспечить стабильность и сравнимость оценок для записей ЭКГ, выполненных с различным временным разрешением. Среднее значение в норме равно 16,3%, стандартное отклонение - 4,08%.

Индекс ПСА предназначен для оценки экстравариабельности КИ или уровня аритмии. Он вычисляется как процент КИ, отличающихся от среднего значения более чем на 2 стандартных отклонения. При нормальном законе распределения таких значений будет менее 2,5%. Среднее значение ПСА в норме равно 2,39%, стандартное отклонение - 0,85%.

Вычисление границ нормы. Часто при вычислении границ нормы используется достаточно произвольная процедура. Выбираются условно «здоровые» пациенты, у которых при поликлиническом наблюдении не обнаружено заболеваний. По их кардиограммам вычисляются показатели ВСР, и по этой выборке определяются средние значения и стандартные отклонения. Такую методику нельзя признать статистически корректной.

1. Как указано выше, всю выборку надо сначала очистить от выбросов. Граница отклонений и число выбросов у отдельного пациента определяется вероятностью таких выбросов, которая зависит от числа показателей и числа измерений.

2. Однако далее необходимо произвести чистку по каждому показателю отдельно, поскольку при общей нормативности данных отдельные показатели некоторых пациентов могут резко отличаться от групповых значений. Критерий стандартного отклонения здесь не подходит, поскольку сами стандартные отклонения оказываются смещенными. Такую дифференцированную чистку можно произвести при визуальном изучении графика упорядоченных по возрастанию значений показателя (график Кетле). Следует исключить значения, принадлежащие к концевым, загибающимся, разреженным участкам графика, оставив центральную, плотную и линейную его часть.

Спектральный анализ Этот метод основан на расчете амплитудного спектра (подробнее см. в разд. 4.4) ряда кардиоинтервалов.

Предварительная временная перенормировка. Однако спектральный анализ не может быть осуществлен непосредственно над интервалограммой, поскольку в строгом смысле она не является временным рядом: ее псевдоамплитуды (КИi) во времени разделены самими же КИi, т. е. ее временной шаг неравномерен. Поэтому перед вычислением спектра требуется временная перенормировка интервалограммы, которая производится следующим образом. Выберем в качестве постоянного временного шага значение минимального КИ (или его половину), которое обозначим мКИ. Проведем теперь две временные оси друг под другом: верхнюю разметим согласно последовательным КИ, а нижнюю разметим с постоянным шагом мКИ. На нижней шкале будем строить амплитуды аКИ вариабельности КИ следующим образом. Рассмотрим очередной шаг мКИi на нижней шкале, здесь может быть два варианта: 1) мКИi полностью укладывается в очередной КИj на верхней шкале, тогда принимаем аКИi=КИj; 2) мКИi накладывается на два соседних КИj и КИj+1 в процентном соотношении a% и b% (a+b=100%), тогда величину аКИi вычисляем из соответствующей пропорции представимости аКИi=(КИj/a%+КИj+1/b%)*100%. Полученный временной ряд аКИi и подвергается спектральному анализу.

Частотные диапазоны. Отдельные области полученного амплитудного спектра (амплитуды измеряются в милисекундах) представляют мощность вариативности КИ, обусловленную влиянием различных регуляторных систем организма. При спектральном анализе выделяют четыре частотных диапазона:

  • · 0,4-0,15 Гц (период колебаний 2,5-6,7 с) - высокочастотный (HF - high frequency) или дыхательный диапазон отражает активность парасимпатического кардиоингибиторного центра продолговатого мозга, реализуется через блуждающий нерв;
  • · 0,15-0,04 Гц (период колебаний 6,7-25 с) - низкочастотный (LF - low frequency) или вегетативный диапазон (медленные волны первого порядка Траубе-Геринга) отражает активность симпатических центров продолговатого мозга, реализуется через влияния СВНС и ПСВНС, но преимущественно - иннервацией от верхнего грудного (звездчатого) симпатического ганглия;
  • · 0,04-0,0033 Гц (период колебаний от 25 с до 5 мин) - сверхнизкочастотный (VLF - very low frequency) сосудисто-двигательный или васкулярный диапазон (медленные волны второго порядка Майера) отражает действие центральных эрготропных и гуморально-метаболических механизмов регуляции; реализуется через изменение в крови гормонов (ретин, ангиотензин, альдостерон и др.);
  • · 0,0033 Гц и медленнее - ультранизкочастотный (ULF) диапазон отражает активность высших центров регуляции сердечного ритма, точное происхождение регуляции неизвестно, диапазон редко исследуется в связи с необходимость выполнения длительных записей.

а - релаксация; б - глубокое дыхание На рис. 6.27 приведены спектрограммы для двух физиологических проб. В состоянии релаксации (рис. 6.27, а) с поверхностным дыханием амплитудный спектр достаточно монотонно спадает в направлении от низких частот к высоким, что говорит о сбалансированной представимости различных ритмов. При глубоком дыхании (рис. 6.27, б) резко выделяется один дыхательный пик на частоте 0,11 Гц (с периодом дыхания 9 с), его амплитуда (вариабельность) в 10 раз пре-вышает средний уровень на других частотах.

Показатели. Для характеристики спектральных диапазонов вычисляется ряд показателей:

  • частота fi и период Тi средневзвешенного пика i-го диапазона, положение такого пика определяется центром тяжести (относительно оси частот) участка графика спектра в диапазоне;
  • мощность спектра в диапазонах в процентном отношении к мощности всего спектра VLF%, LF%, HF% (мощность вычисляется как сумма амплитуд спектральных гармоник в диапазоне); границы нормы составляют, соответственно: 28,65±11,24; 33,68±9,04; 35,79±14,74;
  • среднее значение амплитуды спектра в диапазоне Аср или средняя вариативность КИ; границы нормы составляют, соответственно: 23,1±10,03, 14,2±4,96, 6,97±2,23;
  • амплитуда максимальной гармоники в диапазоне Аmax и ее период Tmax (для повышения устойчивости этих оценок необходимо предварительное сглаживание спектра);
  • нормированные мощности: LFnorm=LF/(LF+HF)*100%; HFnorm=HF/(LF+HF) *100%; коэффициент вазосимпатического баланса LF/HF; границы нормы составляют, соответственно: 50,6±9,4; 49,4±9.4; 0,7±1,5.

Погрешности спектра КИ. Остановимся на некоторых инструментальных погрешностях спектрального анализа (см. в разд. 4.4) применительно к интервалограмме. Во первых, мощности в частотных диапазонах существенно зависят от «реального» разрешения по частоте, которое в свою очередь зависит, по крайней мере, от трех факторов: от длины записи ЭКГ, от величин КИ и от выбранного шага временной перенормировки интервалограммы. Это уже само по себе накладывает ограничения на сравнимость различных спектров. К тому же утечка мощности от высокоамплитудных пиков и боковые пики вследствие амплитудной модуляции ритмики может простираться далеко в соседние диапазоны, внося значительные и неконтролируемые искажения.

Во вторых, при записи ЭКГ не нормируется главный действующий фактор - дыхательный ритм, который может иметь разную частоту и глубину (частота дыхания регламентируется только в пробах глубокого дыхания и гипервентиляции). А о сравнимости спектров в диапазонах HF и LF можно было бы вести речь только тогда, когда пробы выполняются с фиксированным периодом и амплитудой дыхания. Для учета и контроля дыхательного ритма следовало бы запись ЭКГ дополнять регистрацией грудного и брюшного дыхания.

И наконец, само разбиение спектра КИ на существующие диапазоны достаточно условно и статистически никак не обосновано. Для такого обоснования следовало бы на большом экспериментальном материале опробовать различные разбиения и выбрать наиболее значимое и устойчивое в плане факторной интерпретации.

Вызывает также определенное недоумение повсеместное использование именно оценок мощности СА. Такие показатели плохо согласуются друг с другом, поскольку прямо зависят от размеров частотных диапазонов, которые в свою очередь различаются в 2-6 раз. В этом отношении предпочтительнее использование средних амплитуд спектра, которые в свою очередь не плохо коррелируют с рядом показателей ВП в диапазоне значений от 0,4 до 0,7.

Корреляционая ритмография Этот раздел включает преимущественно построение и визуальное изучения двумерных скаттерграмм или диаграмм рассеяния, представляющих зависимость предшествующих КИ от последующих. Каждая точка на этом графике (рис. 6.28) обозначает соотношение между длительностями предыдущего КИi (по оси Y) и следующего КИi+1 (по оси X).

Показатели. Для характеристики облака рассеяния вычисляют положение его центра, т. е. среднее значение КИ (М), а также размеры продольной L и поперечной w осей и их отношение w/L. Если в качестве КИ взять чистую синусоиду (идеальный случай влияния только одного ритма), то w будет составлять 2,5% от L. В качестве оценок w и L обычно используют стандартные отклонения a и b по этим осям.

Для лучшей визуальной сравнимости на скаттерграмме строят эллипс (рис. 6.28) с размером осей 2L, 2w (при небольшом объеме выборки) или 3L, 3w (при большом объеме выборки). Статистическая вероятность выхода за два и три стандартные отклонения составляет 4,56 и 0,26% при нормальном законе распределения КИ.

Норма и отклонения. При наличии резких нарушений ВСР диаграмма рассеяния приобретает случайный характер (рис. 6.29, а) или же распадается на отдельные фрагменты (рис. 6.29, б): так в случае экстрасистолии появляются симметричные относительно диагонали группы точек, сдвинутые в область коротких КИ от основного облака рассеяния, а в случае асистолии появляются симметричные группы точек в области коротких КИ. В этих случаях скаттерграмма не дает никакой новой информации по сравнению с интервалограммой и гистограммой.

а - выраженная аритмия; б - экстрасистолия и асистолия Поэтому скаттерграммы полезны преимущественно в условиях нормы для взаимных сравнений различных испытуемых в различных функциональных пробах. Отдельной областью такого применения является тестирование тренированности и функциональной готовности к физи-ческим и психологическим нагрузкам (см. далее).

Соотношение показателей Для оценки значимости и соотношения различных показателей ВСР в 2006 г. нами было проведено специальное статистическое исследование. Исходными данными являлись 378 записей ЭКГ, выполненных в состоянии релаксации у спортсменов высшей квалификации (футбол, баскетбол, хоккей, шорт-трек, дзюдо) . Результаты корреляционного и факторного анализа позволили сделать следующие выводы:

1. Набор наиболее употребительных в практике показателей ВСР избыточен, более 41% в нем (15 из 36) составляют функционально связанные и высококоррелированные показатели:

· функционально зависимыми являются следующие пары показателей: ЧСС-RRNN, Мо-RRNN, LF/HF-HFnorm, LFnorm-HFnorm, fVLF-TVLF, fLF-TLF, fHF-THF, w/L-ИМА, Kr-ИМА, Kr-w/L;

· высоко коррелированными являются следующие показатели (в качестве множителей указаны коэффициенты корреляции): Мо-0,96*ЧСС, АМо-0,93*ИВР-0,93*ПАПР, ИВР-0,96*ИН, ВПР-0,95*ИН, ПАПР-0,95*ИН-0,91*ВПР, dХ-0,92*SDNN, RMSSD-0,91*рNN50, ИДМ-0,91*HF%, ИДМ-0,91*АсрHF, w=0,91*рNN50, Br=0,91*w/L, Br=0,91*Kr, LF/HF=0,9*VL%.

В частности, все показатели корреляционной ритмографии в указанном смысле дублируются показателями вариационной пульсометрии, тем самым этот раздел являет лишь удобную форму визуального представления информации (скаттерграмму).

2. Показатели вариационной пульсометрии и спектрального анализа отражают различные и ортогональные факторные структуры.

3. Среди показателей вариационной пульсометрии наибольшую факторную значимость имеют две группы показателей: а) САТ, ПСС, ИН, SDNN, pNN50, ИДМ, характеризующие различные аспекты напряженности сердечной деятельности; б) ИМА, ПСА, характеризующие соотношение ритмичности-аритмичности сердечной деятельности;

4. Значимость диапазонов LF и VLF для функциональной диагностики сомнительна, поскольку факторное соответствие их показателей неоднозначно, а сами спектры подвержены влиянию многочисленных и неконтролируемых искажений.

5. Вместо неустойчивых и неоднозначных спектральных показателей возможно использование ИДМ и ИМА, отражающих дыхательные и медленноволновые компоненты сердечной вариативности. Вместо оценок мощности в диапазонах предпочтительнее использование средних амплитуд спектра.

Оценка тренированности Одним из эффективных методов оценки тренированности и функциональной готовности (спортсменов и других профессионалов, работа которых сопряжена с повышенными физическими и психологическими нагрузками) является анализ динамики изменения ЧСС в процессе физической нагрузки большей интенсивности и в период постнагрузочного восстановления. Эта динамика напрямую отражает скоростные и действенные характеристики биохимических обменных процессов, протекающих в жидкостной среде организма. В стационарных условиях физическая нагрузка обычно дается в форме велоэргономометрических испытаний, в условиях же реальных соревнований возможно преимущественно исследование восстановительных процессов.

Биохимия мышечного энергообеспечения. Энергия, получаемая организмом от расщепления продуктов питания, хранится и транс-портируется к клеткам в виде высокоэнергетического соединения АТФ (адренозинтрифосфорная кислота). Эволюция сформировала три энергообеспечивающие функциональные системы:

  • 1. Анаэробно-алактатная система (АТФ - КФ или креатинфосфат) использует АТФ мышц на начальной фазе работы с последующим восстановлением запасов АТФ в мышцах путем расщепления КФ (1 моль КФ = 1 моль АТФ). Запасы АТФ и КФ обеспечивают только краткие энергетические потребности (3-15 с).
  • 2. Анаэробно-лактатная (гликолитическая) система осуществляет энергообеспечение путем расщепления глюкозы или гликогена, сопровождаемое образованием пировиноградной кислоты с последующим ее преобразованием в молочную кислоту, которая, быстро разлагаясь, образует калиевые и натриевые соли, имеющие общее название лактата. Глюкоза и гликоген (образуется в печени из глюкозы) трансформируются в глюкозо-6-фосфат, а затем - в АТФ (1 моль глюкозы = 2 моля АТФ, 1 моль гликогена = 3 моля АТФ).
  • 3. Аэробно-окислительная система использует кислород для окисления углеводов и жиров для обеспечения длительной мышечной работы с образованием АТФ в митохондриях.

В состоянии покоя энергия образуется расщеплением практически одинакового количества жиров и углеводов с образованием глюкозы. При кратковременной интенсивной нагрузке АТФ почти исключительно образуется за счет расщепления углеводов (самая «быстрая» энергия). Содержание углеводов в печени и скелетных мышцах обеспечивает образование не более 2000 ккал энергии, позволяющей пробежать около 32 км. Хотя жиров в организме значительно больше, чем углеводов, но жировой обмен (глюконеогенез) с образованием жирных кислот, а затем и АТФ неизмеримо более энергетически медленный.

Тип мышечных волокон определяет их окислительную способность. Так мышцы, состоящие из БС-волокон, более специфичны к выпол-нению физической нагрузки высокой интенсивности за счет использования энергии гликолитической системы организма. Мышцы же, состоящие из МС-волокон, содержат большее количество митохондрий и окислительных ферментов, что обеспечивает выполнение большего объема физической нагрузки с использованием аэробного обмена. Физическая нагрузка, направленная на развитие выносливости, способствует увеличению митохондрий и окислительных ферментов в МС-волокнах, но особенно - в БС-волокнах. При этом увеличивается нагрузка на систему транспорта кислорода к работающим мышцам.

Накапливающийся в жидкой среде организма лактат «подкисляет» мышечные волокна и тормозит дальнейшее расщепление гликогена, а также снижает способность мышц связывать кальций, что препятствует их сокращению. В интенсивных видах спорта аккумулирование лактата достигает 18-22 ммоль/кг при норме в 2,5-4 ммоль/кг. Предельными концентрациями лактата особенно отличаются такие виды спорта, как бокс и хоккей, а наблюдение их в клинической практике характерно для прединфарктых состояний.

Максимум выброса лактата в кровь происходит на 6-ой минуте после интенсивной нагрузки. Соответственно этому достигает максимума и ЧСС. Далее концентрация лактата в крови и ЧСС падает синхронно. Поэтому по динамике ЧСС можно судить о функциональных способностях организма по уменьшению концентрации лактата, а следовательно - и о эффективности энерговосстанавливащеего метаболизма.

Средства анализа. В нагрузочный и восстановительный период проводят ряд поминутных i=1,2,3. записей ЭКГ. По результатам строят скаттерграммы, которые совмещают на одном графике (рис. 6.30), по которому визуально оценивают динамику изменения показателей КИ. Для каждой i-й скаттерграммы вычисляют числовые показатели М, a, b, b/a. Для оценки и сравнения тренированности в динамике изменения каждого такого показателя Рi вычисляют поинтервальные оценки вида: (Рi-Pmax)/(Po-Pmax), где Po - значение показателя в состоянии релаксации; Pmax- значение показателя в максимуме физической нагрузки.

Рис. 6.30. Совмещенные скаттерграммы постнагрузочных 1-секундных интервалов восстановления и состояния релаксации

Литература 5. Гнездицкий В.В. Вызванные потенциалы мозга в клинической практике. Таганрог: Медиком, 1997.

6. Гнездицкий В.В. Обратная задача ЭЭГ и клиническая электроэнцефалография. Таганрог: Медиком, 2000

7. Жирмунская Е.А. Клиническая электроэнцефалография. М.: 1991.

13. Макс Ж. Методика и техника обработки сигналов при техниче-ских измерениях. М.: Мир, 1983.

17. Отнес Р., Эноксон Л. Прикладной анализ временных рядов. М.: Мир, 1982. Т. 1, 2.

18. К. Прибрам. Языки мозга. М.: Прогресс, 1975.

20. Рандалл Р.Б. Частотный анализ. Брюль и Къер, 1989.

22. Русинов В.С., Гриндель О.М., Болдырева Г.Н., Вакер Е.М. Биопотенциалы головного мозга. Математический анализ. М.: Медицина, 1987.

23. А.Я. Каплан. Проблема сегментного описания электроэнцефалограммы человека//Физиология человека. 1999. Т.25. №1.

24. A.Ya. Kaplan, Al.A. Fingelkurts, An.A. Fingelkurts, S.V. Borisov, B.S. Darkhovsky. Nonstationary nature of the brain activity as revealed by EEG/MEG: methodological, practical and conceptual challenges//Signal processing. Special Issue: Neuronal Coordination in the Brain: A Signal Processing Perspective. 2005. №85.

25. А.Я. Каплан. Нестационарность ЭЭГ: методологический и экспериментальный анализ//Успехи физиологических наук. 1998. Т.29. №3.

26. Каплан А.Я., Борисов С.В.. Динамика сегментных характеристик альфа-активности ЭЭГ человека в покое и при когнитивных нагрузках//Журнал ВНД. 2003. №53.

27.Каплан А.Я., Борисов С.В., Желиговский В.А.. Классификация ЭЭГ подростков по спектральным и сегментным характеристикам в норме и при расстройстве шизофренического спектра//Журнал ВНД. 2005. Т.55. №4.

28. Борисов С.В., Каплан А.Я., Горбачевская Н.Л., Козлова И.А.. Структурная организация альфа-активности ЭЭГ подростков, страдающих расстройствами шизофренического спектра//Журнал ВНД. 2005. Т.55. №3.

29. Борисов С.В., Каплан А.Я., Горбачевская Н.Л., Козлова И.А. Анализ структурной синхронности ЭЭГ подростков, страдающих расстройствами шизофренического спектра//Физиология человека. 2005. Т.31. №3.

38. Кулаичев А.П. Некоторые методические проблемы частотного анализа ЭЭГ//Журнал ВНД. 1997. № 5.

43. Кулаичев А.П. Методология автоматизации психофизиологических экспериментов/сб. Моделирование и анализ данных. М.: РУСАВИА, 2004.

44. Кулаичев А.П. Компьютерная электрофизиология. Изд. 3-е. М.: Изд-во МГУ, 2002.

Вариабельность сердечного ритма

Вариабельность сердечного ритма (ВСР) (используется также аббревиатура – вариабельность ритма сердца – ВРС) является быстро развивающимся разделом кардиологии, в котором наиболее полно реализуются возможности вычислительных методов. Это направление во многом инициировано пионерскими работами известного отечественного исследователя Р.М. Баевского в области космической медицины, который впервые ввел в практику ряд комплексных показателей, характеризующих функционирование различных регуляторных систем организма. В настоящее время стандартизация в области Вариабельности сердечного ритма осуществляется рабочей группой Европейского кардиологического общества и Северо-американского общества стимуляции и электрофизиологии.

Вариабельность – это изменчивость различных параметров, в том числе и ритма сердца, в ответ на воздействие каких-либо факторов, внешних или внутренних.

Построение кардиоинтервалограммы

Сердце в идеале способно реагировать на малейшие изменения в потребностях многочисленных органов и систем. Вариационный анализ ритма сердца дает возможность количественной и дифференцированной оценки степени напряженности или тонуса симпатического и парасимпатического отделов ВНС, их взаимодействия в различных функциональных состояниях, а также деятельности подсистем, управляющих работой различных органов. Поэтому программа-максимум этого направления состоит в разработки вычислительно-аналитических методов комплексной диагностики организма по динамике сердечного ритма.

Методы ВСР не предназначены для диагностики клинических патологий, где хорошо работают традиционные средства визуального и измерительного анализа. Преимущество данного метода состоит в возможности обнаружить тончайшие отклонения в сердечной деятельности, поэтому его применение особенно эффективно для оценки общих функциональных возможностей организма, а также ранних отклонений, которые в отсутствие необходимых профилактических процедур постепенно могут развиться в серьезные заболевания. Методика ВСР широко используется и во многих самостоятельных практических приложениях, в частности, в холтеровском мониторинге и при оценке тренированности спортсменов, а также в других профессиях, связанных с повышенными физическими и психологическими нагрузками.

Исходными материалом для анализа вариабельности сердечного ритма являются непродолжительные одноканальные записи ЭКГ (по стандарту Северо-американского общества стимуляции и электрофизиологии различают кратковременные записи – 5 минут, и длительные – 24 часа), выполняемые в спокойном, расслабленном состоянии или при функциональных пробах. На первом этапе по такой записи вычисляются последовательные кардиоинтервалы (КИ), в качестве реперных (граничных) точек которых используются R-зубцы, как наиболее выраженные и стабильные компоненты ЭКГ. Метод основан на распознавании и измерении временных интервалов между R–зубцами ЭКГ (R-R-интервалы), построении динамических рядов кардиоинтервалов – кардиоинтервалограммы (Рис. 1) и последующего анализа полученных числовых рядов различными математическими методами.

Рис. 1. Принцип построения кардиоинтервалограммы (ритмограмма отмечена плавной линией на нижнем графике), где t - величина RR-интервала в миллисекундах, а n- номер (число) RR-интервала.

Методы анализа

Методы анализа ВСР обычно группируются в следующие четыре основные раздела:

  • кардиоинтервалография;
  • вариационная пульсометрия;
  • спектральный анализ;
  • корреляционая ритмография.

Принцип метода: анализ ВСР является комплексным методом оценки состояния механизмов регуляции физиологических функций в организме человека, в частности, общей активности регуляторных механизмов, нейрогуморальной регуляции сердца, соотношения между симпатическим и парасимпатическим отделами вегетативной нервной системы.

Два контура регуляции

Можно выделить два контура регуляции: центральный и автономный с прямой и обратной связью.

Рабочими структурами автономного контура регуляции являются: синусовый узел, блуждающие нервы и их ядра в продолговатом мозгу.

Центральный контур регуляции сердечного ритма – это сложная многоуровневая система нейрогуморальной регуляции физиологических функций:

1-й уровень обеспечивает взаимодействие организма с внешней средой. К нему относится центральная нервная система, включая корковые механизмы регуляции. Она координирует деятельность всех систем организма в соответствии с воздействием факторов внешней среды.

2-й уровень осуществляет взаимодействие различных систем организма между собой. Основную роль играют высшие вегетативные центры (гипоталамо-гипофизарная система), обеспечивающие гормонально-вегетативный гомеостаз.

3-й уровень обеспечивает внутрисистемный гомеостаз в разных системах организма, в частности в кардиореспираторной системе. Здесь ведущую роль играют подкорковые нервные центры, в частности сосудодвигательный центр, оказывающий стимулирующее или угнетающее действие на сердце через волокна симпатических нервов.

Рис. 2. Механизмы регуляции сердечного ритма (на рисунке ПСНС - парасимпатическая нервная система).

Анализ ВСР используют для оценки вегетативной регуляции ритма сердца у практически здоровых людей с целью выявления их адаптационных возможностей и у больных с различной патологией сердечно-сосудистой системы и вегетативной нервной системы.

Математический анализ вариабельности сердечного ритма

Математический анализ вариабельности сердечного ритма включает применение статистических методов, методов вариационной пульсометрии и спектральный метод.

1. Статистические методы

По исходному динамическому ряду R-R интервалов вычисляются следующие статистические характеристики:

RRNN- математическое ожидание (М) - среднее значение продолжительности R-R интервала, обладает наименьшей изменчивостью среди всех показателей сердечного ритма, так как является одним из наиболее гомеостатируемых параметров организма; характеризует гуморальную регуляцию;

SDNN (мс) - среднее квадратическое отклонение (СКО), является одним из основных показателей вариабельности СР; характеризует вагусную регуляцию;

RMSSD (мс) - среднеквадратичное различие между длительностью соседних R-R интервалов, является мерой ВСР с малой продолжительностью циклов;

РNN50 (%) - доля соседних синусовых интервалов R-R, которые различаются более чем на 50 мс. Является отражением синусовой аритмии, связанной с дыханием;

CV - коэффициент вариации (КВ), КВ=СКО / М х 100, по физиологическому смыслу не отличается от среднего квадратического отклонения, но является показателем, нормированным по частоте пульса.

2. Метод вариационной пульсометрии

Мо - мода - диапазон наиболее часто встречающихся значений кардиоинтервалов. Обычно в качестве моды принимают начальное значение диапазона, в котором отмечается наибольшее число R-R-интервалов. Иногда принимается середина интервала. Мода указывает на наиболее вероятный уровень функционирования системы кровообращения (точнее, синусового узла) и при достаточно стационарных процессах совпадает с математическим ожиданием. В переходных процессах значение М-Мо может быть условной мерой нестационарности, а значение Мо указывает на доминирующий в этом процессе уровень функционирования;

АМо - амплитуда моды - число кардиоинтервалов, попавших в диапазон моды (в %). Величина амплитуды моды зависит от влияния симпатического отдела вегетативной нервной системы и отражает степень централизации управления сердечным ритмом;

DX - вариационный размах (ВР), DX=RRMAXx-RRMIN - максимальная амплитуда колебаний значений кардиоинтервалов, определяемая по разности между максимальной и минимальной продолжительностью кардиоцикла. Вариационный размах отражает суммарный эффект регуляции ритма вегетативной нервной системой в значительной мере связанный с состоянием парасимпатического отдела вегетативной нервной системы. Однако, в определенных условиях при значительной амплитуде медленных волн вариационной размах зависит в большей мере от состояния подкорковых нервных центров, чем от тонуса парасимпатической системы;

ВПР - вегетативный показатель ритма. ВПР = 1 /(Мо х ВР); позволяет судить о вегетативном балансе с точки зрения оценки активности автономного контура регуляции. Чем выше эта активность, т.е. чем меньше величина ВПР, тем в большей мере вегетативный баланс смещен в сторону преобладания парасимпатического отдела;

ИН - индекс напряжения регуляторных систем [Баевский Р.М., 1974]. ИН = АМо/(2ВР х Mo), отражает степень централизации управления сердечным ритмом. Чем меньше величина ИН, тем больше активность парасимпатического отдела и автономного контура. Чем больше величина ИН, тем выше активность симпатического отдела и степень централизации управления сердечным ритмом.

У здоровых взрослых людей средние показатели вариационной пульсометрии составляют: Мо - 0.80 ± 0.04 сек.; АМо - 43.0 ± 0.9%; ВР - 0.21 ± 0.01 сек. ИН у хорошо физически развитых лиц колеблется в пределах от 80 до 140 усл.ед.

3. Спектральный метод анализа ВСР

В анализе волновой структуры кардиоинтервалограммы и выделяют действие трех регуляторных систем: симпатического и парасимпатического отделов автономной нервной системы, и действие центральной нервной системы, которые влияют на вариабельность сердечного ритма.

Применение спектрального анализа позволяет количественно оценить различные частотные составляющие колебаний ритма сердца и наглядно графически представить соотношения разных компонентов сердечного ритма, отражающих активность определенных звеньев регуляторного механизма. Выделяют три главных спектральных компонента (см. рис. выше):

HF (s – волны) - дыхательные волны или быстрые волны (Т=2,5-6,6 сек., v=0,15-0,4 Гц.), отражают процессы дыхания и другие виды парасимпатической активности, на спектрограмме отмечены зеленым цветом;

LF (m – волны) - медленные волны I порядка (MBI) или средние волны (Т=10-30сек., v=0.04-0.15 Гц) связаны с симпатической активностью (в первую очередь вазомоторного центра), на спектрограмме отмечены красным цветом;

VLF (l – волны) - медленные волны II порядка (MBII) или медленные волны (Т>30сек., v<0.04Гц) - разного рода медленные гуморально-метаболические влияния, на спектрограмме отмечены синим цветом.

При спектральном анализе определяют суммарную мощность всех компонентов спектра (ТР), и абсолютную суммарную мощность для каждого из компонентов, при этом ТР определяется как сумма мощностей в диапазонах HF, LF и VLF.

Все вышеперечисленные параметры отражаются в отчете по кардиотестированию.

Как проводить математический анализ вариабельности сердечного ритма

Результаты лучше всего занести в таблицу и сопоставить с нормальными значениями. Затем проводят оценку полученных данных и делают вывод о состоянии вегетативной нервной системы, влиянии автономного и центрального контуров регуляции и адаптационных возможностях испытуемого.

Таблица «Вариабельность сердечного ритма».

Исследование проводилось в положении (лежа/сидя).

Длительность в мин.___________. Общее количество R-Rинтервалов___________. ЧСС:________

Норма и снижение вариабельности сердечного ритма

Постановку диагноза, связанного с проблемами в области сердца значительно упрощают новейшие методы исследования сосудистой системы человека. Несмотря на то, что сердце является независимым органом, на него достаточно серьезное влияние оказывает деятельность нервной системы, способная привести к перебоям в его работе.

Последние исследования выявили взаимосвязь между заболеваниями сердца и нервной системой, провоцирующими частую внезапную смертность.

Что такое ВСР?

Нормальный временной интервал между каждым циклом сердечных сокращений всегда разный. У людей со здоровым сердцем он все время меняется даже при стационарном покое. Это явление получило название вариабельность сердечного ритма (сокращенно ВСР).

Разница между сокращениями находится в пределах определенной средней величины, которая меняется в зависимости от конкретного состояния организма. Поэтому ВСР оценивается только при стационарном положении, так как разнообразие в деятельности организма приводит к изменению ЧСС, каждый раз подстраиваясь под новый уровень.

Показатели ВСР указывают на физиологию в системах. Анализируя ВСР можно точно оценить функциональные особенности организма, проследить за динамикой работы сердца, выявить резкое понижение сердечных сокращений, приводящих к внезапной смерти.

Методы определения

Кардиологическое изучение сердечных сокращений определило оптимальные методы ВСР, их характеристики при различных состояниях.

Анализ проводится на изучении последовательности интервалов:

  • R-R (электрокардиограмма сокращений);
  • N-N (промежутки между нормальными сокращениями).

Статистические методы. Эти способы основаны на получении и сравнении «N-N» промежутков с оценкой вариабельности. Полученная после обследования кардиоинтервалограмма показывает совокупность повторяющихся друг за другом «R-R» интервалов.

Показатели данных промежутков включают:

  • SDNN отражают сумму показателей ВСР при котором выделены отклонения N-N интервалов и вариабельность R-R промежутков;
  • RMSSD сравнение последовательности N-N интервалов;
  • PNN5O показывает процент N-N промежутков, которые различаются большее 50 миллисекунд за весь промежуток исследования;
  • CV оценка показателей величинной вариабельности.

Геометрические методы выделяют путем получения гистограммы, на которой изображены кардиоинтерваллы с различной продолжительностью.

Эти методы просчитывают изменчивость сердечных сокращений с помощью определенных величин:

  • Mo (Мода) обозначает кардиоинтервалы;
  • Amo (Амплитуда Моды) – количество кардиоинтервалов, которые пропорциональны Mo в процентном соотношении к выбранному объему;
  • VAR (вариационный размах) соотношение степени между кардиоинтервалами.

Автокорреляционный анализ оценивает ритм сердца как случайное развитие. Это график динамической корреляции, полученный при постепенном смещении на одну единицу динамического ряда по отношению к ряду собственному.

Этот качественный анализ позволяет изучить влияние центрального звена на работу сердца и определить скрытость периодичности сердечного ритма.

Корреляционная ритмография (скаттерография). Суть метода заключена в отображении следуемых друг за другом кардиоинтервалов в графической двухмерной плоскости.

Во время построения скаттерогаммы выделяется биссектриса, в центре которой находится совокупность точек. Если точки отклонены влево, видно на сколько цикл короче, смещение вправо показывает насколько длиннее предыдущего.

На полученной ритмограмме выделена область, соответствующая отклонению N-N промежутков. Способ позволяет выявить активную работу вегетативной системы и ее последующее влияние на сердце.

Способы исследования ВСР

Международными медицинскими стандартами определено два способа исследования сердечного ритма:

  1. Регистрационная запись «RR» интервалов - на протяжении 5 минут используется для быстрой оценки ВСР и проведения определенных медицинских проб;
  2. Суточная запись «RR» промежутков - точнее оценивает ритмы вегетативной регистрации «RR» промежутков. Однако при расшифровке записи многие показатели оцениваются по пятиминутному промежутку регистрации ВСР, так как на длинной записи образуются отрезки, мешающие сделать спектральный анализ.

Для определения высокочастотного компонента в сердечном ритме нужна запись продолжительностью около 60 секунд, а для анализа низкочастотного компонента требуется 120 секунд записи. Для правильной оценки компонента низкой частоты необходима пятиминутная запись, которая и выбрана для стандартного исследования ВСР.

ВСР здорового организма

Вариабельность серединного ритма у здоровых людей дает возможность определить их физическую выносливость согласно возраста, пола, времени суток.

У каждого человека показатели ВСР индивидуальны. У женщин наблюдается более активная частота сердечных сокращений. В детском и подростковом возрасте прослеживается наивысшая ВСР. Высоко- и низкочастотные компоненты снижаются с возрастом.

Влияние на ВСР оказывает вес человека. Пониженная масса тела провоцирует мощность спектра ВСР, у людей с лишним весом наблюдается обратный эффект.

Спорт и легкие физические нагрузки оказывают благоприятное воздействие на ВСР: мощность спектра возрастает, ЧСС становится реже. Избыточные же нагрузки, напротив, повышают частоту сокращений и снижают ВСР. Этим объясняются частые внезапные смерти среди спортсменов.

Использование методов определения вариации сердечного ритма позволяет контролировать тренировки, постепенно увеличивая нагрузки.

Если ВСР снижен

Резкое снижение вариации сердечного ритма указывает на определенные заболевания:

· Ишемическая и гипертоническая болезни;

· Прием некоторых препаратов;

Исследования ВСР в медицинской деятельности относятся к несложным и доступным методам, оценивающим вегетативную регуляцию у взрослых и детей при ряде заболеваний.

В лечебной практике анализ позволяет:

· Провести оценку висцеральной регуляции сердца;

· Определить общую работу организма;

· Оценить уровень стрессовой ситуации и физической активности;

· Контролировать эффективность проведения лекарственной терапии;

· Диагностировать заболевание на начальной стадии;

· Помогает подобрать подход к лечению сердечно-сосудистых заболеваний.

Поэтому при обследовании организма не стоит пренебрегать методами исследований сердечных сокращений. Показатели ВСР помогают определить степень тяжести заболевания и подобрать правильное лечение.

Related Posts:

Leave a Reply

Существует ли риск инсульта?

1. Повышенное(более 140) артериальное давление:

  • часто
  • иногда
  • редко

2. Атеросклероз сосудов

3. Курение и алкоголь:

  • часто
  • иногда
  • редко

4. Болезни сердца:

  • врожденный порок
  • клапанные нарушения
  • инфаркт

5. Прохождение диспансеризации и диангостики МРТ:

  • каждый год
  • раз в жизни
  • никогда

Итого: 0 %

Инсульт достаточно опасное заболевание, которому подвержены люди далеко не только старческого возраста, но и среднего и даже совсем молодого.

Инсульт – чрезвычайная опасная ситуация, когда требуется немедленная помощь. Зачастую он заканчивается инвалидностью, во многих случаях даже смертельным исходом. Помимо закупорки кровеносного сосуда при ишемическом типе, причиной приступа может стать и кровоизлияние в мозг на фоне повышенного давления, иначе говоря геморрагический инсульт.

Ряд факторов увеличивает вероятность наступления инсульта. Не всегда виновны, например, гены или возраст, хотя после 60 лет угроза значительно возрастает. Тем не менее, каждый может что-то предпринять для его предотвращения.

Повышенное артериальное давление является основным фактором угрозы развития инсульта. Коварная гипертония не проявляется симптомами на начальном этапе. Поэтому больные замечают ее поздно. Важно регулярно измерять кровяное давление и принимать лекарства при повышенных уровнях.

Никотин сужает кровеносные сосуды и повышает артериальное давление. Опасность инсульта у курильщика вдвое выше, чем у некурящего. Тем не менее, есть и хорошие новости: те, кто бросают курить, заметно снижают эту опасность.

3. При избыточной массе тела: худейте

Ожирение - важный фактор развития инфаркта мозга. Тучные люди должны задуматься о программе похудения: есть меньше и качественнее, добавить физической активности. Пожилым людям стоит обсудить с врачом, в какой степени им полезно снижение веса.

4. Держите уровни холестерина в норме

Повышенный уровень "плохого" холестерина ЛНП ведет к отложениям в сосудах бляшек и эмбол. Какими должны быть значения? Каждый должен выяснить в индивидуальном порядке с врачом. Поскольку пределы зависят, например, от наличия сопутствующих заболеваний. Кроме того, высокие значения «хорошего» холестерина ЛВП считаются положительными. Здоровый образ жизни, особенно сбалансированное питание и много физических упражнений, может положительно повлиять на уровень холестерина.

Полезной для сосудов является диета, которая обычно известна как «средиземноморская». То есть: много фруктов и овощей, орехи, оливковое масло вместо масла для жарки, меньше колбасы и мяса и много рыбы. Хорошие новости для гурманов: можно позволить себе один день отступить от правил. Важно в общем правильно питаться.

6. Умеренное потребление алкоголя

Чрезмерное употребление алкоголя увеличивает гибель пострадавших от инсульта клеток мозга, что не допустимо. Полностью воздерживаться необязательно. Стакан красного вина в день даже полезен.

Движение иногда лучшее, что можно сделать для своего здоровья, чтобы сбросить килограммы, нормализовать артериальное давление и поддержать эластичность сосудов. Идеальны для этого упражнения на выносливость, такие как плавание или быстрая ходьба. Продолжительность и интенсивность зависят от личной физической подготовки. Важное замечание: нетренированные старше 35 лет должны быть первоначально осмотрены врачом, прежде чем начать заниматься спортом.

8. Прислушивайтесь к ритму сердца

Ряд заболеваний сердца способствует вероятности инсульта. К ним относятся фибрилляция предсердий, врожденные пороки и другие нарушения ритма. Возможные ранние признаки проблем с сердцем нельзя игнорировать ни при каких обстоятельствах.

9. Контролируйте сахар в крови

Люди с диабетом в два раза чаще переносят инфаркт мозга, чем остальная часть населения. Причина заключается в том, что повышенные уровни глюкозы могут привести к повреждению кровеносных сосудов и способствуют отложению бляшек. Кроме того, у больных сахарным диабетом часто присутствуют другие факторы риска инсульта, такие как гипертония или слишком высокое наличие липидов в крови. Поэтому больные диабетом должны позаботиться о регулировании уровня сахара.

Иногда стресс не имеет ничего плохого, может даже мотивировать. Однако, продолжительный стресс может повысить кровяное давление и восприимчивость к болезням. Он косвенно может стать причиной развития инсульта. Панацеи от хронического стресса не существует. Подумайте, что лучше для вашей психики: спорт, интересное хобби или, возможно, упражнения на расслабление.

Вариабельность сердечного ритма (ВСР) – это патологическое свойство интервала R-R соседних сердечных циклов менять свою продолжительность в разные промежутки времени. ВСР определяется колебанием частоты сердечных сокращений относительно её средней величины.

Зачем выявляют вариабельность сердечного ритма?

Ценность выявления ВСР в том, что это хороший показатель нарушения вегетативной регуляции работы сердца. Чем больше выражены вегетативные изменения, тем сильнее снижаются показатели ВСР.

Норма вариабельности сердечного ритма или её высокие значения определяются у молодых людей и спортсменов, средние показатели свойственны больным с органической патологией сердца, а снижена вариабельность ритма обычно у тех, кто перенес фибрилляцию желудочков, но могут быть и другие причины.

История внедрения ВСР как диагностического показателя начинается в 1965 году, когда исследователи Hon и Lee опубликовали результаты целенаправленного изучения этого явления. Тогда удалось заметить прогностическое значение вариабельности сердечного ритма плода: за ней, с высокой долей вероятности, следует опасное или угрожающее жизни нарушение работы сердца.

В 1973 году Sayers с соавторами определил границы нормальных (физиологических) колебаний в ритме сердечной деятельности. В восьмидесятых годах, благодаря развитию компьютерных технологий, в метод вдохнули новую жизнь: если раньше врачам приходилось высчитывать все показатели вручную, то теперь эту работу выполняет специальное программное обеспечение. Компьютеры не только упростили само исследование, но и дали возможность его расширить и обогатить. Так появился метод спектрального анализа, круглосуточное мониторирование сердечного ритма с вычислением ВСР и другие дополнения.

Снижена вариабельность сердечного ритма. Стоит ли переживать?

Делать выводы на результатах одного исследования нельзя. Вариабельность сердечного ритма – неспецифический признак, он характерен для многих состояний, соответственно и прогноз может быть абсолютно разным. Поэтому после обнаружения ВСР следующим этапом идет выяснение возможной причины.

Причин существует много, но на первом плане стоят заболевания сердца: инфаркт миокарда, ишемическая болезнь сердца, дилатационная кардиомиопатия, гипертоническая болезнь. Описано развитие ВСР при диабетической полинейропатии. Иногда характерные изменения вызывают болезни центральной нервной системы: ОНМК (острое нарушение мозгового кровообращения), тетраплегия и другие.

Всегда нужно помнить о том, что снижение вариабельности сердечного ритма может быть результатом приема некоторых лекарств. Такой эффект отмечался у следующих групп препаратов:

  • бета-адреноблокаторы;
  • м-холиноблокаторы;
  • антиаритмические препараты 1с класса;
  • антагонисты кальция;
  • сердечные гликозиды;
  • препараты, повышающие длительность потенциала действия;
  • ингибиторы АПФ;
  • психотропные средства.

Что касается вариабельности ритма сердца плода, то в этом случае, разумеется, причины обычно другие.

Результаты исследования ВСР используют в диагностике диабетической полинейропатии, определении риска внезапной смерти у перенесших инфаркт миокарда. Получается, что при разных обстоятельствах изменения ритма указывают на разные процессы, происходящие в организме. Также исследование ВСР нашло применение в анестезиологии, акушерстве, неврологии. В каждой дисциплине есть свои принципы интерпретации результатов этого исследования, следуя которым, соответственно, делаются разные выводы.

Введение В данной статье мы расскажем, что такое вариабельность сердечного ритма, что на нее влияет, как ее измерить и что делать с полученными данными. Статья включает небольшую практическую часть по анализу данных, которая в большей степени направлена для спортсменов, тренирующих выносливость. В первой части будет немного физиологии, во второй вы узнаете как измерять вариабельность сердечного ритма и какие использовать параметры. В следующей мы расскажем о выборе программного обеспечения и как все это использовать в тренировочном процессе. Мы постарались максимально упростить некоторые моменты, сохранив при этом основную суть. Надеюсь нам это удалось.Физиология Наш организм это отлаженная и сложная система, которая способна адаптироваться к изменениям окружающей и внутренней среды. Одной из важнейших функций организма является поддержание в очень узких специфических диапазонах основных параметров: например температуру тела, pH крови и многое другое. Вся эта структура работает автономно, она не зависит от нашего мышления, в том числе и работа сердца. Все эти процессы регуляции называются гомеостаз и являются основой функционирования живого организма.

Рисунок 1. Сердце. **

Наше сердце - это не просто насос. Это очень сложный, центр обработки информации, который общается с головным мозгом с помощью нервной и гормональной системы, а также другими путям. В статьях доступно обширное описание и схемы взаимодействия сердца с головным мозгом.

И мы так же не управляем нашим сердцем, его автономность обусловлена работой синусового узла - который запускает сокращение сердечной мышцы. Он обладает автоматизмом, то есть самопроизвольно возбуждается и запускает распространение потенциала действия по миокарду, что вызывает сокращение сердца.

Сердце работает автономно благодаря синусовому узлу.

Рисунок 2. Автономная работа сердца

Синусовый узел тоже работает сам по себе, несмотря на то, что на нем сказывается работа всего организма - центральной нервной система, вегетативной (автономной) нервной система (ВНС), а также различных гуморальных и рефлекторных воздействий.

Синусовый узел отражает работу всех регуляторных систем организма.

Работу всех регуляторных систем нашего организма можно представить в виде двухконтурной модели, предложенной Баевским Р.М. . Он предложил разделить все регуляторные системы (контуры управления) организма на два типа: высший - центральный контур и низший - автономный контур регуляции (рис. 3).

*Рисунок 3. Двухконтурная модель регуляции сердечного ритма (по Баевскому Р.М., 1979 г.) CCC - сердечно-сосудистая система.

Автономный контур регуляции состоит из синусового узла, который непосредственно связан с сердечно-сосудистой системой (ССС) и через нее с системой дыхания (С.д.) и нервными центрами, обеспечивающими рефлекторную регуляцию дыхания и кровообращения. Непосредственное воздействие на клетки синусового узла оказывают блуждающие нервы (V).

Центральный контур регуляции воздействует на синусовый узел через симпатические нервы (S) и гуморальный канал регуляции (г.к.), либо изменяет центральный тонус ядер блуждающих нервов имеет более сложную структуру, он состоит из 3 уровней, в зависимости от выполняемых функций. Уровень В : центральный контур управления сердечным ритмом, обеспечивает “внутрисистемный” гомеостаз через симпатическую систему.

Уровень Б : обеспечивает межсистемный гомеостаз, между различными системами организма с помощью нервных клеток и гуморально (с помощью гормонов).

Уровень А : обеспечивает адаптацию с внешней средой с помощью центральной нервной системы.

Эффективная адаптация происходит с минимальным участием высших уровней управления, то есть за счет автономного контура. Чем больше вклад центральных контуров тем сложней и “дороже” организму адаптироваться.

На наше сердце основное влияние оказывает симпатическая и парасимпатическая системы (см. рисунок 4). Они являются антагонистами друг друга. Симпатическая возбуждает нас, готовит выполнять действия типа “бей-беги”: повышает частоту сердечных сокращений (ЧСС), увеличивает липолиз. Парасимпатическая же успокаивает, чсс уменьшается, усиливается моторика кишечника. На сердечную мышцу они действуют “синергично”: при увеличение активности парасимпатических волокон также наблюдается снижение активности симпатических волокон.

Рисунок 4. Блок-схема иннервации синусового узла сердца симпатической и парасимпатической системами.

Благодаря их воздействию сердечный ритм никогда не бывает постоянным. Эта изменчивость времени между каждым ударом и называется вариабельностью сердечного ритма . На записи ЭКГ это выглядит примерно так:

*Рисунок 5. Вариабельность сердечного ритма

  • Вариабельность сердечного ритма (ВСР) отражает работу всех регуляторных систем организма.

Начало Так как нам интересна работа всех регуляторных систем организма, а она отображается на работе синусового узла, крайне важно исключить из рассмотрения результаты действия других центров возбуждения, действие которых для наших целей будет являться помехой.

Поэтому крайне важно чтобы сокращение сердца запускал именно синусовый узел. На ЭКГ это будет проявляться в виде зубца P (отмечен красным цветом) (см. рисунок 6)

Рисунок 6. Сердечный цикл с синусовым ритмом.

Запись Для записи вариабельности сердечного ритма необходим пульсометр, который выдает данные о вариабельности сердечного ритма, например Polar H7. Этого вполне достаточно чтобы получить точные цифры и свежая статья где сравнивает запись с камеры телефона

Возможны различные дефекты записи из-за:

  • плохого контакта с датчиком (не забываем его смочить перед записью).
  • движения во время записи
  • различных мыслей

Выбираем любое программное обеспечение для записи и анализа вариабельности сердечного ритма, которое вам нравится. Об этом, позже, будет отдельная статья. Стараемся исключить все отвлекающие факторы, наша задача в идеале делать все замеры в одно и тоже время и в одном и том же комфортном для нас месте. Также рекомендую встать с кровати, сделать необходимые (утренние) процедуры и вернуться назад - это уменьшить шанс уснуть во время записи, что периодически случается. Полежать еще пару минут и включить запись. Чем продолжительней запись тем более она информативна. Для коротких записей обычно достаточно 5 минут. Есть еще варианты записи 256 RR интервалов . Хотя можно встретить и попытки оценить ваше состояние и по более коротким записям. Мы используем 10 минутную запись, хотя хотелось бы и побольше…Более длинная запись будет содержать больше информации о состоянии организма.

Анализ данных.

И так, мы получили массив RR интервалов, который выглядит примерно так: рисунок 7:

*Рисунок 7. 10 минутная утренняя запись вариабельности сердечного ритма.

Перед началом анализа нужно исключить из исходных данных артефакты и шумы (экстрасистолы, аритмии, дефекты записи и т.д.). Если это нельзя сделать, то такие данные не годятся, вероятней всего показатели будут либо завышены, либо занижены.

** Вариабельность сердечного ритма может быть оценена различными способами. Один из самых простых способов - это оценить статистическую изменчивость последовательности RR интервалов, для этого используют статистический метод. Это позволяет количественно оценить вариабельность в определенном промежутке времени.

SDNN - стандартное отклонение всех нормальных (синусовых, NN) интервалов от среднего значения. Отражает общую вариабельность всего спектра, коррелирует с общей мощностью (TP), в большей степени зависит от низкочастотной составляющей. Также любое ваше движение во времени записи обязательно отразится на этом показателе. Один из основных показателей, оценивающий механизмы регуляции.

В статье пытаются найти корреляцию этого показателя с VO2Max.

NN50 - количество пар последовательных интервалов, которые отличаются друг от друга более чем на 50 мс.

pNN50 - % NN50 интервалов от общего количества всех NN интервалов. Говорит о активности парасимпатической системы.

RMSSD - так же как и pNN50 свидетельствует в основном о активности парасимпатической системы . Измеряется как квадратный корень из средних квадратов разностей смежных NN интервалов.

А работе оценивают динамику подготовки триатлетов на основе RMSSD и ln RMSSD за 32 недели.

Также этот показатель коррелирует с состоянием иммунной системы .

CV (SDNN/R-Rср) - коэффициент вариации, позволяет оценивать влияния ЧСС на вариабельность.

Для наглядности прикрепил файл с динамикой некоторых показателей, указанных выше, в период до и после полумарафона который был 5.11.2017.

Спектральный анализ

Если внимательно посмотреть на запись вариабельности, то можно увидеть что она меняется волнообразно (см. Рис. 8)

*Рис. 8 . Волнообразная структура сердечного ритма собаки =) Исключительно для большей наглядности

  • Чтобы оценить эти волны надо преобразовать это все в другой вид с помощью преобразования Фурье (на рис. 9 продемонстрировано применение преобразования Фурье).

*Рисунок 9. Преобразование Фурье.

* Теперь мы можем, оценить мощность этих волн и сравнить их между собой см.

*Рисунок 10. Спектральный анализ ВСР

HF (High Frequency) - мощность высокочастотной области спектра, диапазон от 0.15 Гц до 0.4 Гц, что соответствует периоду между 2.5 сек и 7 сек. Этот показатель отражает работу парасимпатической системы. Основной медиатор - ацетилхолин, который достаточно быстро разрушается. HF отражает наше дыхание. Точнее дыхательную волну - во время вдоха интервал между сокращениями сердца уменьшается, а во время выдоха увеличивается .

С этим показателем все “хорошо”, есть много научных статей доказывающие его взаимосвязь с парасимпатической системой.

LF (Low Frequency) - мощность низкочастотной части спектра, медленные волны, диапазон от 0.04 Гц до 0.15 Гц, что соответствует периоду между 7 сек и 25 сек. Основной медиатор - норадреналин. LF отражает работу симпатической системы.

В отличие от HF тут все сложней, не совсем ясно, действительно ли он отражает симпатическую систему. Хотя в случаи 24 часового мониторинга это подтверждается следующим исследованием . Однако в большой статье говорится о сложности интерпретации и даже опровергается связь этого показателя с симпатической системой.

LF/HF - отражает баланс симпатического и парасимпатического отделов ВНС.

VLF (Very Low Frequency) - очень медленные волны, с частотой до 0.04 Гц. Период между 25 до 300 сек. До сих пор не ясно, что он отображает, особенно на 5 мин записях. Есть статьи, в которых видна корреляция с циркадными ритмами и температурой тела. У здоровых людей наблюдается увеличение мощности VLF, которое происходит ночью и пики перед пробуждением . Это увеличение автономной активности, по-видимому, коррелирует с пиком утреннего кортизола.

В статье пытаются найти корреляцию этого показателя с депрессивным состоянием. Кроме того, малая мощность в этой полосе была связана с сильным воспалением .

Анализировать VLF можно лишь при длительных записях.

TP (Total Power) - общая мощность всех волн с частотой в диапазоне от 0,0033 Гц до 0.40 Гц.

HFL - новый показатель, базирующийся на динамическом сравнении HF и LF составляющих вариабельности сердечного ритма. Показатель HLF позволяет характеризовать в динамике вегетативный баланс симпатической и парасимпатической систем. Увеличение этого показателя свидетельствовало о преобладании парасимпатической регуляции в механизмах адаптации, снижение показателя говорило о включение симпатической регуляции.

А вот так выглядит динамика, в период выступления на полумарафоне, показателей, обозначенных выше:

И собственно динамика всех показателей разом:

В следующей части статьи мы сделаем обзор различных приложений для оценки вариабельности сердечного ритма и потом перейдем непосредственно к практике.

**Используемая литература

** 1. Rollin McCraty, PhD; United States; Fred Shaffer, PhD, BCB, United States - Heart Rate Variability: New Perspectives on Physiological Mechanisms, Assessment of Self-regulatory Capacity, and Health Risk, 2015 . [NCBI ] 2. Armour, J.A. and J.L. Ardell, eds. Neurocardiology., Oxford University Press: New York. The little brain on the heart, 1994. [PDF ]

3. Баевский Прогнозирование состояний на грани нормы и патологии. “Медицина”, 1979. 4.Fred Shaffer, Rollin McCraty and Christopher L. Zerr. A healthy heart is not a metronome: an integrative review of the heart"s anatomy and heart rate variability, 2014. [NCBI ]

5. Vanderlei L C, Silva R A, Pastre C M, Azevedo F M, and Godoy M F, Comparison of the Polar S810i monitor and the ECG for the analysis of heart rate variability in the time and frequency domains, Braz. J. Med. Biol. Res., 2008.[Scielo ]

6. Nunan D, Jakovljevic G, Donovan G, Hodges L D, Sandercock G R, and Brodie D A, Levels of agreement for RR intervals and short-term heart rate variability obtained from the Polar S810 and an alternative system, Eur. J. Appl. Physiol, 2008, 103(5): 529–537.

7. Plews DJ, Scott B, Altini M, Wood M, Kilding AE, Laursen PB, Comparison of Heart-Rate-Variability Recording With Smartphone Photoplethysmography, Polar H7 Chest Strap, and Electrocardiography, 2017. [NCBI ]

8. Boulos M., Barron S., Nicolski E., Markiewicz W. Power spectral analysis of heart rate variability during upright tilt test: a comparison of patients with syncope and normal subjects. Cardiology, 1996; 87:1, 28.

9. Kouakam C., Lacroix D., Zghal N., Logier R., Klug D., Le Franc P., Jarwe M., Kacet S. Inadequate sympathovagal balance in response to orthostatism in patients with unexplained syncope and a positive head up tilt test. Heart 1999 Sep; 82(3):312-8

10. Arsalan Aslani, Amir Aslani,1 Jalal Kheirkhah,2 and Vahid Sobhani, Cardio-pulmonary fitness test by ultra-short heart rate variability , 2011. [PubMed ]

11. Berntson GG, Lozano DL, Chen YJ., Filter properties of root mean square successive difference (RMSSD) for heart rate, 2005. [PubMed ]

12. Buchheit M., Monitoring training status with HR measures: do all roads lead to Rome?, 2014. [PubMed ]

13. Laurent Schmitt, Jacques Regnard, and Grégoire P. Millet, Monitoring Fatigue Status with HRV Measures in Elite Athletes: An Avenue Beyond RMSSD?, 2015. [PubMed ]

14. Stanley J, D"Auria S, Buchheit M.Cardiac parasympathetic activity and race performance: an elite triathlete case study., 2015. [PubMed ]

15. Germán Hernández Cruz, José Naranjo Orellana, Adrián Rosas Taraco, and Blanca Rangel Colmenero, Leukocyte Populations are Associated with Heart Rate Variability After a Triathlon, 2016. [PubMed ]

16. Eckberg, D.L., Human sinus arrhythmia as an index of vagal outflow. Journal of Applied Physiology, 1983. 54: p. 961-966.

17. Axelrod, S., et al., Spectral analysis of fluctuations in heart rate: An objective evaluation. Nephron, 1987. 45: p. 202-206 . 18. George E. Billman, The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance, 2013

19. Huikuri H.V., et al., Circadian rhythms of frequency domain measures of heart rate variability in healthy subjects and patients with coronary artery disease. Effects of arousal and upright posture, 1994

20. Julia D. Blood , Jia Wu, Tara M. Chaplin, Rebecca Hommer, Lauren Vazquez, Helena J.V. Rutherford, Linda C. Mayes, and Michael J. Crowleyb, The variable heart: High frequency and very low frequency correlates of depressive symptoms in children and adolescents, 2015. [PubMed ]

21. Lampert, R., Bremner JD, Su S, Miller A, Lee F, Cheema F, Goldberg J, Vaccarino V. Decreased heart rate variability is associated with higher levels of inflammation in middle-aged men., 2008. [PubMed ]

22. Carney RM, Freedland KE, Stein PK, Miller GE, Steinmeyer B, Rich MW, Duntley SP., Heart rate variability and markers of inflammation and coagulation in depressed patients with coronary heart disease, 2007. [