Кто изобрел световой микроскоп. Первый микроскоп сконструировал

Изобретатель : Захариус Йансен
Страна : Голландия
Время изобретения : 1595 г.

Сегодня трудно представить себе научную деятельность человека без микроскопа. Микроскоп широко применяется в большинстве лабораторий медицины и биологии, геологии и материаловедения.

Полученные с помощью микроскопа результаты необходимы при постановке точного диагноза, при контроле над ходом лечения. С использованием микроскопа происходит разработка и внедрение новых препаратов, делаются научные открытия.

Микроскоп (от греческого mikros — малый и skopeo — смотрю) — оптический прибор для получения увеличенного изображения мелких объектов и их деталей, не видимых невооруженным глазом.

Глаз человека способен различать детали объекта, отстоящие друг от друга не менее чем на 0,08 мм. С помощью светового микроскопа можно видеть детали, расстояние между которыми составляет до 0,2 мкм. Электронный микроскоп позволяет получить разрешение до 0,1-0,01 нм.

Изобретение микроскопа, столь важного для всей науки прибора обусловлено, прежде всего, влиянием развития оптики. Некоторые оптические свойства изогнутых поверхностей были известны еще Евклиду (300 лет до н.э.) и Птоломею (127-151 гг.), однако их увеличительная способность не нашла практического применения. В связи с этим первые очки были изобретены Сальвинио дели Арлеати в Италии только в 1285 г. В 16 веке Леонардо да Винчи и Мауролико показали, что малые объекты лучше изучать с помощью лупы.

Первый микроскоп был создан лишь в 1595 году Захариусом Йансеном (Z. Jansen). Изобретение заключалось в том, что Захариус Йансен смонтировал две выпуклые линзы внутри одной трубки, тем самым, заложив основы для создания сложных микроскопов. Фокусировка на исследуемом объекте достигалось за счет выдвижного тубуса. Увеличение микроскопа составляло от 3 до 10 крат. И это был настоящий прорыв в области микроскопии! Каждый свой следующий микроскоп он значительно совершенствовал.

В этот период (XVI в.) датские, английские и итальянские исследовательские приборы постепенно начали свое развитие, закладывая фундамент современной микроскопии.

Быстрое распространение и совершенствование микроскопов началось после того, как Галилей (G. Galilei), совершенствуя сконструированную им , стал использовать ее как своеобразный микроскоп (1609-1610), изменяя расстояние между объективом и окуляром.

Позднее, в 1624 г., добившись изготовления более короткофокусных линз, Галилей значительно уменьшил габариты своего микроскопа.

В 1625 г. членом Римской «Академии зорких» («Akudemia dei lincei») И. Фабером был предложен термин «микроскоп». Первые успехи, связанные с применением микроскопа в научных биологических исследованиях, были достигнуты Гуком (R. Hooke), который первым описал растительную клетку (около 1665 г.). В своей книге «Micrographia» Гук описал устройство микроскопа.

В 1681 г. Лондонское королевское общество на своем заседании подробно обсуждало своеобразное положение. Голландец Левенгук (A. van Leenwenhoek) описывал изумительные чудеса, которые открывал своим микроскопом в капле воды, в настое перца, в иле реки, в дупле собственного зуба. Левенгук с помощью микроскопа обнаружил и зарисовал сперматозоиды различных простейших, детали строения костной ткани (1673-1677). Он писал:»С величайшим изумлением я увидел в капле великое множество зверюшек, оживленно двигающихся во всех направлениях, как щука в воде. Самое мелкое из этих крошечных животных в тысячу раз меньше глаза взрослой вши.»

Лучшие лупы Левенгука увеличивали в 270 раз. С ними он увидел впервые кровеносные тельца, движение крови в капиллярных сосудах хвоста головастика, полосатость мускулов. Он открыл инфузории. Он впервые погрузился в мир микроскопических одноклеточных водорослей, где лежит граница между животным и растением; где движущееся животное, как зеленое растение, обладает хлорофиллом и питается, поглощая свет; где растение, еще прикрепленное к субстрату, потеряло хлорофилл и заглатывает бактерии. Наконец, он видел даже бактерии и в великом разнообразии. Но, разумеется, тогда не было еще и отдаленной возможности понять ни значение бактерий для человека, ни смысла зеленого вещества — хлорофилла, ни границы между растением н животным.

Открывался новый мир живых существ, более разнообразный и бесконечно более оригинальный, чем видимый нами мир.

В 1668 г. Е. Дивини, присоединив к окуляру полевую линзу, создал окуляр современного типа. В 1673 г. Гавелий ввел микрометрический винт, а Гертель предложил под столик микроскопа поместить зеркало. Таким образом, микроскоп стали монтировать из тех основных деталей, которые входят в состав современного биологического микроскопа.

В середине 17 столетия Ньютон открыл сложный состав белого света и разложил его призмой. Рёмер доказал, что свет распространяется с конечной скоростью, и измерил ее. Ньютон высказал знаменитую гипотезу — неверную, как вам известно,- о том, что свет есть поток летящих частиц такой необычайной мелкости и частоты, что они проникают через прозрачные тела, как стекло через хрусталик глаза, и, поражая ретину ударами, производят физиологическое ощущение света. Гюйгенс впервые заговорил о волнообразной природе света и доказал, как естественно она объясняет и законы простого отражения и преломления, и законы двойного лучепреломления в исландском шпате. Мысли Гюйгенса и Ньютона встретились в резком контрасте. Таким образом, в XVII в. в остром споре действительно встала проблема о сущности света.

Как разгадка вопроса сущности света, так и усовершенствование микроскопа подвигались вперед медленно. Спор между идеями Ньютона и Гюйгенса продолжался целое столетие. К представлению о волновой природе света примкнул знаменитый Эйлер. Но решен был вопрос лишь через сто с лишним лет Френелем талантливым исследователем, какого знала наука.

Чем отличается поток распространяющихся волн — идея Гюйгенса — от потока несущихся мелких частиц — идея Ньютона? Двумя признаками:

1. Встретившись, волны могут взаимно уничтожиться, если горб одной ляжет на долину другой. Свет + свет, сложившись вместе, могут дать темноту. Это явление интерференции, это кольца Ньютона, непонятые самим Ньютоном; с потоками частиц этого быть не может. Два потока частиц — это всегда двойной поток, двойной свет.

2. Через отверстие поток частиц проходит прямо, не расходясь в стороны, а поток волн непременно расходится, рассеивается. Это дифракция.

Френель доказал теоретически, что расхождение во все стороны ничтожно, если волна мала, но все же и эту ничтожную дифракцию он обнаружил и измерил, а по ее величине определил длину волны света. Из явлений интерференции, которые так хорошо известны оптикам, полирующим до «одного цвета», до «двух полос», он также измерил длину волны — это полмикрона (половина тысячной доли миллиметра). И отсюда стали неоспоримыми волновая теория и исключительная тонкость и острота проникновения в сущность живого вещества. С тех пор все мы в разных модификациях подтверждаем и применяем мысли Френеля. Но и не зная этих мыслей, можно усовершенствовать микроскоп.

Так это и было в XVIII столетии, хотя события развивались очень медленно. Сейчас трудно даже представить себе, что первая труба Галилея, в которую он наблюдал мир Юпитера, и микроскоп Левенгука были простыми неахроматическими линзами.

Огромным препятствием в деле ахроматизации было отсутствие хорошего флинта. Как известно, ахроматизация требует двух стекол: крона и флинта. Последний представляет стекло, в котором одной из основных частей является тяжелая окись свинца, обладающая непропорционально большой дисперсией.

В 1824 г. громадный успех микроскопа дала простая практическая идея Саллига, воспроизведенная французской фирмой Шевалье. Объектив, раньше состоявший из одной линзы, расчленен на части, его начали изготовлять из многих ахроматических линз. Так умножено число параметров, дана возможность исправления ошибок системы, и стало впервые возможным говорить о настоящих больших увеличениях — в 500 и даже 1000 раз. Граница предельного видения передвинулась от двух к одному микрону. Далеко позади оставлен микроскоп Левенгука.

В 70-х годах 19 века победоносное шествие микроскопии связано с именем немецкого физика-оптика и астронома Эрнста Карла Аббе (Ernst Karl Abbe).

Достигнуто было следующее:

Во-первых, предельное разрешение передвинулось от полумикрона до одной десятой микрона.

Во-вторых, в построении микроскопа вместо грубой эмпирики введена высокая научность.

В-третьих, наконец, показаны пределы возможного с микроскопом, и эти пределы завоеваны.

Сформирован штаб ученых, оптиков и вычислителей, работающих при фирме Цейсса. В капитальных сочинениях учениками Аббе дана теория микроскопа и вообще оптических приборов. Выработана система измерений, определяющих качество микроскопа.

Когда выяснилось, что существующие сорта стекол не могут удовлетворить научным требованиям, планомерно созданы были новые сорта. Вне тайн наследников Гинана — Пара-Мантуа (наследники Бонтана) в Париже и Ченсов в Бирмингаме — созданы были вновь методы плавки , и дело практической оптики развито до такой степени, что можно сказать: Аббе оптическим снаряжением армии почти выиграл мировую войну 1914-1918 гг.

Наконец, призвав на помощь основы волновой теории света, Аббе впервые ясно показал, что каждой остроте инструмента соответствует свой предел возможности. Тончайший же из всех инструментов — это длина волны. Нельзя видеть объекты меньше полудлины волны — утверждает дифракционная теория Аббе,- и нельзя получить изображения меньше полудлины волны, т.е. меньше 1/4 микрона. Или с разными ухищрениями иммерсии, когда мы применяем среды, в которых длина волны меньше,- до 0,1 микрона. Волна лимитирует нас. Правда, лимиты очень мелкие, но все же это лимиты для деятельности человека.

Физик-оптик чувствует, когда на пути световой волны вставлен объект толщиной в тысячную, в десятитысячную, в отдельных случаях даже в одну стотысячную длину волны. Сама длина волны измерена физиками с точностью до одной десятимиллионной своей величины. Можно ли думать, что оптики, соединившие свои усилия с цитологами, не овладеют той сотой длины волны, которая стоит в поставленной ими задаче? Найдутся десятки способов обойти предел, поставленный длиной волны.

Вам известен один из таких обходов, так называемый метод ультрамикроскопии. Если невидимые в микроскоп микробы расставлены далеко друг от друга, то можно осветить их сбоку ярким светом. Как бы они малы ни были, они заблестят, как звезда на темном фоне. Форму их нельзя определить, можно лишь констатировать их присутствие, но и это часто чрезвычайно важно. Этим методом широко пользуется бактериология.

Труды английского оптика Дж. Сиркса (1893) положили начало интерференционной микроскопии. В 1903 г. Р. Жигмонди (R. Zsigmondy) и Зидентопф (Н. Siedentopf) создали ультрамикроскоп, в 1911 г. Саньяком (М. Sagnac) был описан первый двухлучевой интерференционный микроскоп, в 1935 г. Зернике (F. Zernicke) предложил использовать метод фазового контраста для наблюдения в микроскопах прозрачных, слабо рассеивающих свет объектов. В середине XX в. был изобретен электронный микроскоп, в 1953 г. финским физиологом Вильской (A. Wilska) был изобретен аноптральный микроскоп.

Большой вклад в разработку проблем теоретической и прикладной оптики, усовершенствование оптических систем микроскопа и микроскопической техники внесли М.В. Ломоносов, И.П. Кулибин, Л.И. Мандельштам, Д.С. Рождественский, А.А. Лебедев, С.И. Вавилов, В.П. Линник, Д.Д. Максутов и др.

С древних времен человек хотел увидеть вещи, куда более мелкие, чем может воспринять невооруженный глаз. Кто первый начал использовать линзы, сейчас сказать невозможно, но достоверно известно, например, что наши предки более 2 тысяч лет назад знали о том, что стекло способно преломлять свет.

Во втором веке до нашей эры Клавдий Птолемей описывал, как “изгибается” палка, которую окунули в воду, и даже очень точно подсчитал постоянную рефракции. Еще ранее в Китае делали устройства из линз и наполненной водой трубки, чтобы “видеть невидимое”.

В 1267 году Роджер Бэкон описал принципы работы линз и общую идею телескопа и микроскопа, но только в конце XVI века Захарий Янсен и его отец Ганс, производители очков из Голландии, начали экспериментировать с линзами. Они поместили несколько линз в трубку и обнаружили, что предметы, обозреваемые через нее, выглядят значительно больше, чем под простым увеличительным стеклом.

Но этот их “микроскоп” был скорее диковинкой, нежели научным прибором. Сохранилось описание инструмента, который отец и сын сделали для королевской семьи. Он состоял из трех скользящих трубок общей длиной в 45 с небольшим сантиметров и диаметром в 5 сантиметров. В закрытом виде он увеличивал в 3 раза, в полностью раскрытом - в 9 раз, правда, изображение получалось немного размытым.

В 1609 году Галилео Галилей создал составной микроскоп с выпуклыми и вогнутыми линзами и в 1612 представил этот “оккиолино” (“маленький глаз”) польскому королю Сигизмунду III. Через несколько лет, в 1619-м, нидерландский изобретатель Корнелиус Дреббель продемонстрировал в Лондоне свою версию микроскопа, с двумя выпуклыми линзами. Но само слово “микроскоп” появилось только в 1625 году, когда, по аналогии с “телескопом”, его придумал немецкий ботаник из Бамберга, Иоханн (Джованни) Фабер.

От Левенгука до Аббе

В 1665 году английский естествоиспытатель Роберт Гук усовершенствовал увеличительный инструмент и открыл элементарные единицы строения, клетки, изучая кору пробкового дуба. Через 10 лет после этого голландский ученый Антони ван Левенгук сумел получить еще более совершенные линзы. Его микроскоп увеличивал предметы в 270 раз, при том, что остальные подобные приборы едва достигали 50-кратного увеличения.

Благодаря своим качественно отшлифованным и отполированным линзам, Ленвенгук сделал множество открытий - он первым увидел и описал бактерии, дрожжевые клетки, наблюдал движение кровяных телец в капиллярах. Всего ученый изготовил как минимум 25 разных микроскопов, из которых до нашего времени дошли лишь девять. Есть предположения, что некоторые из утерянных приборов имели даже 500-кратное увеличение.

Несмотря на все достижения в этой области, в последующие 200 лет микроскопы практически не изменились. И только в 1850-х немецкий инженер Карл Цейс начал совершенствовать линзы для микроскопов, которые производила его компания. В 1880-х он нанял Отто Шотта, специалиста по оптическим стеклам. Его исследования позволили значительно улучшить качество увеличительных приборов.

Еще один сотрудник Карла Цейса, физик-оптик Эрнст Аббе, усовершенствовал сам процесс производства оптических инструментов. Прежде все работы с ними выполнялись методом проб и ошибок; Аббе же создал для них теоретический фундамент, научно обоснованные методы изготовления.

С развитием технологии и появился микроскоп, который мы знаем сейчас. Однако теперь оптические микроскопы, способные фокусироваться на объектах, размер которых превышает или равен длине волны света, уже не могли удовлетворить ученых.

Современные электронные микроскопы

В 1931 году немецкий физик Эрнст Руска начал работу над созданием первого электронного микроскопа (просвечивающий (трансмиссионный) электронный микроскоп). В 1986 году за это изобретение он получит Нобелевскую премию.

В 1936-м немецкий же ученый Эрвин Вильгель Мюллер изобрел электронный проектор (автоэлектронный микроскоп). Прибор позволял увеличить изображение твердого тела в миллионы раз. Через 15 лет Мюллер же сделал еще один прорыв в этой области - автоионный микроскоп, который дал физику возможность впервые в истории человечества увидеть атомы.

Параллельно велись и другие работы. В 1953 году голландец Фриц Цернике, профессор теоретической физики, получил Нобелевскую премию за создание фазово-контрастной микроскопии. В 67-м Эрвин Мюллер усовершенствовал свой автоионный микроскоп, добавив к нему время-пролетный масс-спектрометр, создав первый “атомный зонд”. Это устройство позволяет не только идентифицировать отдельно взятый атом, но и определять массу и кратность заряда иона.

В 1981-м Герд Бинниг и Генрих Рорер из Германии создали сканирующий (растровый) туннельный микроскоп; через пять лет после этого Бинниг и его коллеги изобрели сканирующий атомно-силовой микроскоп. В отличие от предыдущей разработки, АСМ позволяет исследовать и проводящие, и непроводящие поверхности и фактически манипулировать атомами. В том же году Бинниг и Рорер получили Нобелевскую премию за СТМ.

В 1988 году трое ученых из Великобритании снабдили “атомный зонд” Мюллера позиционно-чувствительным детектором, что дало возможность определять положение атомов в трех измерениях.

В 1988-м японский инженер Кинго Итая изобрел электрохимический сканирующий туннельный микроскоп, а три года спустя был предложен кельвин-зондовый силовой микроскоп - бесконтактная версия атомно-силового микроскопа.

Сегодня трудно представить себе научную деятельность человека без микроскопа. Микроскоп широко применяется в большинстве лабораторий медицины и биологии, геологии и материаловедения.

Полученные с помощью микроскопа результаты необходимы при постановке точного диагноза, при контроле над ходом лечения. С использованием микроскопа происходит разработка и внедрение новых препаратов, делаются научные открытия.

Микроскоп - (от греческого mikros - малый и skopeo - смотрю), оптический прибор для получения увеличенного изображения мелких объектов и их деталей, не видимых невооруженным глазом.

Глаз человека способен различать детали объекта, отстоящие друг от друга не менее чем на 0,08 мм. С помощью светового микроскопа можно видеть детали, расстояние между которыми составляет до 0,2 мкм. Электронный микроскоп позволяет получить разрешение до 0,1-0,01 нм.

Изобретение микроскопа, столь важного для всей науки прибора обусловлено, прежде всего, влиянием развития оптики. Некоторые оптические свойства изогнутых поверхностей были известны еще Евклиду (300 лет до н.э.) и Птоломею (127-151 гг.), однако их увеличительная способность не нашла практического применения. В связи с этим первые очки были изобретены Сальвинио дели Арлеати в Италии только в 1285 г. В 16 веке Леонардо да Винчи и Мауролико показали, что малые объекты лучше изучать с помощью лупы.

Первый микроскоп был создан лишь в 1595 году Захариусом Йансеном (Z. Jansen). Изобретение заключалось в том, что Захариус Йансен смонтировал две выпуклые линзы внутри одной трубки, тем самым, заложив основы для создания сложных микроскопов. Фокусировка на исследуемом объекте достигалось за счет выдвижного тубуса. Увеличение микроскопа составляло от 3 до 10 крат. И это был настоящий прорыв в области микроскопии! Каждый свой следующий микроскоп он значительно совершенствовал.

В этот период (XVI в.) датские, английские и итальянские исследовательские приборы постепенно начали свое развитие, закладывая фундамент современной микроскопии.

Быстрое распространение и совершенствование микроскопов началось после того, как Галилей (G. Galilei), совершенствуя сконструированную им зрительную трубу, стал использовать ее как своеобразный микроскоп (1609-1610), изменяя расстояние между объективом и окуляром.

Позднее, в 1624 г., добившись изготовления более короткофокусных линз, Галилей значительно уменьшил габариты своего микроскопа.

В 1625 г. членом Римской "Академии зорких" ("Akudemia dei lincei") И. Фабером был предложен термин "микроскоп" . Первые успехи, связанные с применением микроскопа в научных биологических исследованиях, были достигнуты Гуком (R. Hooke), который первым описал растительную клетку (около 1665 г.). В своей книге "Micrographia" Гук описал устройство микроскопа.

В 1681 г. Лондонское королевское общество в своем заседании подробно обсуждало своеобразное положение. Голландец Левенгук (A. van Leenwenhoek) описывал изумительные чудеса, которые открывал своим микроскопом в капле воды, в настое перца, в иле реки, в дупле собственного зуба. Левенгук с помощью микроскопа обнаружил и зарисовал сперматозоиды различных простейших, детали строения костной ткани (1673-1677).

"С величайшим изумлением я увидел в капле великое множество зверюшек, оживленно двигающихся во всех направлениях, как щука в воде. Самое мелкое из этих крошечных животных в тысячу раз меньше глаза взрослой вши."

Лучшие лупы Левенгука увеличивали в 270 раз. С ними он увидел впервые кровеносные тельца, движение крови в капиллярных сосудах хвоста головастика, полосатость мускулов. Он открыл инфузории. Он впервые погрузился в мир микроскопических одноклеточных водорослей, где лежит граница между животным и растением; где движущееся животное, как зеленое растение, обладает хлорофиллом и питается, поглощая свет; где растение, еще прикрепленное к субстрату, потеряло хлорофилл и заглатывает бактерии. Наконец, он видел даже бактерии и в великом разнообразии. Но, разумеется, тогда не было еще и отдаленной возможности понять ни значение бактерий для человека, ни смысла зеленого вещества - хлорофилла, ни границы между растением н животным.

Открывался новый мир живых существ, более разнообразный и бесконечно более оригинальный, чем видимый нами мир.

В 1668 г. Е. Дивини, присоединив к окуляру полевую линзу, создал окуляр современного типа. В 1673 г. Гавелий ввел микрометрический винт, а Гертель предложил под столик микроскопа поместить зеркало. Таким образом, микроскоп стали монтировать из тех основных деталей, которые входят в состав современного биологического микроскопа.

В середине 17 столетия Ньютон открыл сложный состав белого света и разложил его призмой. Рёмер доказал, что свет распространяется с конечной скоростью, и измерил ее. Ньютон высказал знаменитую гипотезу - неверную, как вам известно,- о том, что свет есть поток летящих частиц такой необычайной мелкости и частоты, что они проникают через прозрачные тела, как стекло через хрусталик глаза, и, поражая ретину ударами, производят физиологическое ощущение света. Гюйгенс впервые заговорил о волнообразной природе света и доказал, как естественно она объясняет и законы простого отражения и преломления, и законы двойного лучепреломления в исландском шпате. Мысли Гюйгенса и Ньютона встретились в резком контрасте. Таким образом, в XVII в. в остром споре действительно встала проблема о сущности света.

Как разгадка вопроса сущности света, так и усовершенствование микроскопа подвигались вперед медленно. Спор между идеями Ньютона и Гюйгенса продолжался целое столетие. К представлению о волновой природе света примкнул знаменитый Эйлер. Но решен был вопрос лишь через сто с лишним лет Френелем талантливым исследователем, какого знала наука.

Чем отличается поток распространяющихся волн - идея Гюйгенса - от потока несущихся мелких частиц - идея Ньютона? Двумя признаками:

1. Встретившись, волны могут взаимно уничтожиться, если горб одной ляжет на долину другой. Свет + свет, сложившись вместе, могут дать темноту. Это явление интерференции , это кольца Ньютона, непонятые самим Ньютоном; с потоками частиц этого быть не может. Два потока частиц - это всегда двойной поток, двойной свет.

2. Через отверстие поток частиц проходит прямо, не расходясь в стороны, а поток волн непременно расходится, рассеивается. Это дифракция .

Френель доказал теоретически, что расхождение во все стороны ничтожно, если волна мала, но все же и эту ничтожную дифракцию он обнаружил и измерил, а по ее величине определил длину волны света. Из явлений интерференции, которые так хорошо известны оптикам, полирующим до "одного цвета", до "двух полос", он также измерил длину волны - это полмикрона (половина тысячной доли миллиметра). И отсюда стали неоспоримыми волновая теория и исключительная тонкость и острота проникновения в сущность живого вещества. С тех пор все мы в разных модификациях подтверждаем и применяем мысли Френеля. Но и не зная этих мыслей, можно усовершенствовать микроскоп.

Так это и было в XVIII столетии, хотя события развивались очень медленно. Сейчас трудно даже представить себе, что первая труба Галилея, в которую он наблюдал мир Юпитера, и микроскоп Левенгука были простыми неахроматическими линзами.

Огромным препятствием в деле ахроматизации было отсутствие хорошего флинта. Как известно, ахроматизация требует двух стекол: крона и флинта. Последний представляет стекло, в котором одной из основных частей является тяжелая окись свинца, обладающая непропорционально большой дисперсией.

В 1824 г. громадный успех микроскопа дала простая практическая идея Саллига, воспроизведенная французской фирмой Шевалье. Объектив, раньше состоявший из одной линзы, расчленен на части, его начали изготовлять из многих ахроматических линз. Так умножено число параметров, дана возможность исправления ошибок системы, и стало впервые возможным говорить о настоящих больших увеличениях - в 500 и даже 1000 раз. Граница предельного видения передвинулась от двух к одному микрону. Далеко позади оставлен микроскоп Левенгука.

В 70-х годах 19 века победоносное шествие микроскопии двинулось вперед. Сказавшим был Аббе (Е. Abbe).

Достигнуто было следующее:

Во-первых, предельное разрешение передвинулось от полумикрона до одной десятой микрона.

Во-вторых, в построении микроскопа вместо грубой эмпирики введена высокая научность.

В-третьих, наконец, показаны пределы возможного с микроскопом, и эти пределы завоеваны.

Сформирован штаб ученых, оптиков и вычислителей, работающих при фирме Цейсса. В капитальных сочинениях учениками Аббе дана теория микроскопа и вообще оптических приборов. Выработана система измерений, определяющих качество микроскопа.

Когда выяснилось, что существующие сорта стекол не могут удовлетворить научным требованиям, планомерно созданы были новые сорта. Вне тайн наследников Гинана - Пара-Мантуа (наследники Бонтана) в Париже и Ченсов в Бирмингаме - созданы были вновь методы плавки стекла, и дело практической оптики развито до такой степени, что можно сказать: Аббе оптическим снаряжением армии почти выиграл мировую войну 1914-1918 гг.

Наконец, призвав на помощь основы волновой теории света, Аббе впервые ясно показал, что каждой остроте инструмента соответствует свой предел возможности. Тончайший же из всех инструментов - это длина волны. Нельзя видеть объекты меньше полудлины волны - утверждает дифракционная теория Аббе,- и нельзя получить изображения меньше полудлины волны, т.е. меньше 1/4 микрона. Или с разными ухищрениями иммерсии, когда мы применяем среды, в которых длина волны меньше,- до 0,1 микрона. Волна лимитирует нас. Правда, лимиты очень мелкие, но все же это лимиты для деятельности человека.

Физик-оптик чувствует, когда на пути световой волны вставлен объект толщиной в тысячную, в десятитысячную, в отдельных случаях даже в одну стотысячную длину волны. Сама длина волны измерена физиками с точностью до одной десятимиллионной своей величины. Можно ли думать, что оптики, соединившие свои усилия с цитологами, не овладеют той сотой длины волны, которая стоит в поставленной ими задаче? Найдутся десятки способов обойти предел, поставленный длиной волны. Вам известен один из таких обходов, так называемый метод ультрамикроскопии. Если невидимые в микроскоп микробы расставлены далеко друг от друга, то можно осветить их сбоку ярким светом. Как бы они малы ни были, они заблестят, как звезда на темном фоне. Форму их нельзя определить, можно лишь констатировать их присутствие, но и это часто чрезвычайно важно. Этим методом широко пользуется бактериология.

Труды английского оптика Дж. Сиркса (1893) положили начало интерференционной микроскопии. В 1903 г. Р. Жигмонди (R. Zsigmondy) и Зидентопф (Н. Siedentopf) создали ультрамикроскоп, в 1911 г. Саньяком (М. Sagnac) был описан первый двухлучевой интерференционный микроскоп, в 1935 г. Зернике (F. Zernicke) предложил использовать метод фазового контраста для наблюдения в микроскопах прозрачных, слабо рассеивающих свет объектов. В середине XX в. был изобретен электронный микроскоп, в 1953 г. финским физиологом Вильской (A. Wilska) был изобретен аноптральный микроскоп.

Большой вклад в разработку проблем теоретической и прикладной оптики, усовершенствование оптических систем микроскопа и микроскопической техники внесли М.В. Ломоносов, И.П. Кулибин, Л.И. Мандельштам, Д.С. Рождественский, А.А. Лебедев, С.И. Вавилов, В.П. Линник, Д.Д. Максутов и др.

Литература:

Д.С. Рождественский Избранные труды. М.-Л., "Наука", 1964.

Рождественский Д.С. К вопросу об изображении прозрачных объектов в микроскопе. - Тр. ГОИ, 1940, т. 14

Соболь С.Л. История микроскопа и микроскопических исследований в России в XVIII веке. 1949.

Clay R.S., Court T.H. The history of the microscope. L., 1932; Bradbury S. The evolution of the microscope. Oxford, 1967.

Микроскоп - это оптический прибор, позволяющий получить увеличенные изображения мелких предметов или их деталей, которые невозможно рассмотреть невооружённым глазом.

Дословно слово «микроскоп» означает «наблюдать за чем-то маленьким, (от греческого «малый» и «смотрю»).

Глаз человека, как любая оптическая система, характеризуется определённым разрешением. Это наименьшее расстояние между двумя точками или линиями, когда они ещё не сливаются, а воспринимаются раздельно друг от друга. При нормальном зрении на расстоянии 250 мм разрешение составляет 0,176 мм. Поэтому все объекты, размер которых меньше этой величины, наш глаз уже не в состоянии различить. Мы не можем видеть клетки растений и животных, различные микроорганизмы и др. Но это можно сделать с помощью специальных оптических приборов - микроскопов.

Как устроен микроскоп

Классический микроскоп состоит из трех основных частей: оптической, осветительной и механической. Оптическая часть - это окуляры и объективы, осветительная - источники освещения, конденсор и диафрагма. К механической части принято относить все остальные элементы: штатив, револьверное устройство, предметный столик, систему фокусировки и многое другое. Все вместе и позволяет проводить исследования микромира.

Что такое «диафрагма микроскопа»: поговорим об осветительной системе

Для наблюдений микромира хорошее освещение настолько же важно, как и качество оптики микроскопа. Светодиоды, галогенные лампы, зеркало - для микроскопа могут использоваться разные источники освещения. У каждого есть свои плюсы и минусы. Подсветка может быть верхней, нижней или комбинированной. Ее расположение влияет на то, какие микропрепараты можно изучать при помощи микроскопа (прозрачные, полупрозрачные или непрозрачные).

Под предметным столиком, на который кладется образец для исследований, располагается диафрагма микроскопа. Она может быть дисковой или ирисовой. Диафрагма предназначена для регулировки интенсивности освещения: с ее помощью можно отрегулировать толщину светового пучка, идущего от осветителя. Дисковая диафрагма - это небольшая пластина с отверстиями разного диаметра. Ее обычно устанавливают на любительские микроскопы. Ирисовая диафрагма состоит из множества лепестков, с помощью которых можно плавно изменять диаметр светопропускающего отверстия. Она чаще встречается в микроскопах профессионального уровня.

Оптическая часть: окуляры и объективы

Объективы и окуляры - наиболее популярные запчасти для микроскопа. Хотя далеко не все микроскопы поддерживают смену этих аксессуаров. Оптическая система отвечает за формирование увеличенного изображения. Чем она лучше и совершеннее, тем картинка получается четче и подробнее. Но высочайший уровень качества оптики нужен только в профессиональных микроскопах. Для любительских исследований достаточно стандартной стеклянной оптики, обеспечивающей увеличение до 500-1000 крат. А вот пластиковых линз мы рекомендуем избегать - качество картинки в таких микроскопах обычно расстраивает.

Механические элементы

В любом микроскопе присутствуют элементы, которые позволяют исследователю управлять фокусом, регулировать положение исследуемого образца, настраивать рабочее расстояние оптического прибора. Все это часть механики микроскопа: коаксиальные механизмы фокусировки, препаратоводитель и препаратодержатель, ручки регулировки резкости, предметный столик и многое другое.

История создания микроскопа

Когда появился первый микроскоп, точно неизвестно. Простейшие увеличительные приборы - двояковыпуклые оптические линзы, находили ещё при раскопках на территории Древнего Вавилона.

Считается, что первый микроскоп создали в 1590 г. голландский оптик Ганс Янсен и его сын Захарий Янсен. Так как линзы в те времена шлифовали вручную, то они имели различные дефекты: царапины, неровности. Дефекты на линзах искали с помощью другой линзы - лупы. Оказалось, что если рассматривать предмет с помощью двух линз, то происходит его многократное увеличение. Смонтировав 2 выпуклые линзы внутри одной трубки, Захарий Янсен получил прибор, который напоминал подзорную трубу. В одном конце этой трубки находилась линза, выполняющая функцию объектива, а в другом - линза-окуляр. Но в отличие от подзорной трубы прибор Янсена не приближал предметы, а увеличивал их.

В 1609 г. итальянский учёный Галилео Галилей разработал составной микроскоп с выпуклой и вогнутой линзами. Он называл его «оккиолино» - маленький глаз.

10 лет спустя, в 1619 г. нидерландский изобретатель Корнелиус Якобсон Дреббель сконструировал составной микроскоп с двумя выпуклыми линзами.

Мало кто знает, что свой название микроскоп получил только в 1625 г. Термин «микроскоп» предложил друг Галилео Галилея немецкий доктор и ботаник Джованни Фабер.

Все созданные в то время микроскопы были довольны примитивными. Так, микроскоп Галилея мог увеличивать всего в 9 раз. Усовершенствовав оптическую систему Галилея, английский учёный Роберт Гук в 1665 г. создал свой микроскоп, который обладал уже 30-кратным увеличением.

В 1674 г. нидерландский натуралист Антони ван Левенгук создал простейший микроскоп, в котором использовалась всего одна линза. Нужно сказать, что создание линз было одним из увлечений учёного. И благодаря его высокому мастерству в шлифовании, все сделанные им линзы получались очень высокого качества. Левенгук называл их «микроскопиями». Они были маленькие, размером с ноготь, но могли увеличивать в 100 или даже в 300 раз.

Микроскоп Левенгука представлял собой металлическую пластину, в центре которой находилась линза. Наблюдатель смотрел через неё на образец, закреплённый с другой стороны. И хотя работать с таким микроскопом было не совсем удобно, Левенгук смог сделать с помощью своих микроскопов важные открытия.

В те времена было мало известно о строении органов человека. С помощью своих линз Левенгук обнаружил, что кровь состоит из множества крошечных частиц - эритроцитов, а мышечная ткань - из тончайших волокон. В растворах он увидел мельчайшие существа разной формы, которые двигались, сталкивались и разбегались. Теперь мы знаем, что это бактерии: кокки, бациллы и др. Но до Левенгука об этом не было известно.

Всего учёным было изготовлено более 25 микроскопов. 9 из них сохранились до наших дней. Они способны увеличивать изображение в 275 раз.

Микроскоп Левенгука был первым микроскопом, который завезли в Россию по указанию Петра I.

Постепенно микроскоп совершенствовался и приобретал форму, близкую к современной. Учёные России также внесли огромный вклад в этот процесс. В начале XVIII века в Петербурге в мастерской Академии наук создавались усовершенствованные конструкции микроскопов. Русский изобретатель И.П. Кулибин построил свой первый микроскоп, не имея никаких знаний о том, как это делали за границей. Он создал производство стекла для линз, придумал приспособления для их шлифовки.

Великий русский учёный Михаил Васильевич Ломоносов первым из русских учёных стал использовать микроскоп в своих научных исследованиях.

Однозначного ответа на вопрос «Кто же всё-таки изобрел микроскоп?», пожалуй, не существует. В развитие микроскопного дела внесли вклад лучшие ученые и изобретатели разных эпох.

Человек долгое время жил в окружении невидимых организмов. Постоянно сталкиваясь с продуктами их жизнедеятельности. Изготавливал вино, уксус, выпекал хлеб и многое другое. Страдал от заболеваний вызванных этими организмами. Не подозревая об их существовании. Ведь их размеры настолько малы, что невидимы человеческому глазу.
Ещё в Древнем Вавилоне пытались расширить человеческие возможности. Во время раскопок были найдены двояковыпуклые линза. На сегодня простейшие оптические приборы. Это был шаг в микромир. В дальнейшем в 16-17 века благодаря развитию астрономии были созданы подзорные трубы. Было замечено, если линзы расположить наоборот, можно рассмотреть очень мелкие предметы. Зная это, в 1610 году Г. Галилей создал микроскоп.
Позднее физик, изобретатель Р. Гук сконструировал микроскоп из двух двояковыпуклых линз. Он давал увеличение в 30 раз. При рассмотрении среза пробки он увидел ячейки. Впоследствии они были им названы клетками. Все дальнейшее изучение микромира было связано с усовершенствованием микроскопов.
Большой вклад в изучении микроорганизмов внес Антони ван Левенгук. Изначально его заинтересовало строение льняных волокон. Для их рассмотрения он отшлифовал несколько грубых линз. В дальнейшем он увлекся этой работой. Стал усовершенствовать линзы. Он их называл «микроскопии». Свои одинарные двояковыпуклые стекла вставлял в оправу из серебра или латуни. Имели вид современных луп. В дальнейшем он создал микроскоп с подсветкой. Их увеличительные способности были на тот период наибольшими. Увеличивали в 200-270 раз. Будучи от природы любознательным он рассматривал все: кровь, зубной налет, слюну и многое другое. За свои работы был принят в Лондонское Королевское общество. Он пришел к выводу, что все вокруг заселено маленькими организмами. По его мнению, они были устроены как животные. Известно, что Петр первый побывал у него и привез в Россию первый микроскоп. В дальнейшем по его образцу их выпускали в России.
Развитие наук требовало усложнение увеличительных приборов. И в 1863 году появился поляризационный. С 1931 года пришло время электронных микроскопов. Он был гораздо мощней, чем световой. Его возможности позволили рассмотреть не только клетку, но и её органеллы. Началось время развития гистологии (наука о тканях) и цитологии (наука о клетке). Позже его создателю Э. Руска была вручена Нобелевская премия.
Усовершенствование электронного микроскопа привело к созданию лазерного прибора. В основе лежит лазерный пучок. Это приводит к тому, что появилась возможность рассматривать в более глубоких слоях. Его модернизация привела к созданию лазерного рентгеновского микроскопа. На сегодняшний день с помощью увеличительных приборов можно не просто увидеть микромир, но и сфотографировать. Сделать 3 D проекцию. Если на первых этапах создания увеличительных приборов их размеры были не большие. Современное оборудование же бывает не просто больших, а очень больших размеров. В тоже время они стали более доступные. Их можно приобрести для личного пользования.
Создание микроскопа и его дальнейшее совершенствование позволило развиться многим наукам. Первой, из которых стала микробиология. Его используют во многих смежных дисциплинах: медицине, ботаники, геологии, химии, энтомологии (наука о насекомых), физики и других. Благодаря ему было сделано большое количество научных открытий. Появилась возможность понять механизм многих процессов. Научиться справляться с опасными заболеваниями, которые вызываются микроорганизмами.