Оптическая система глаза. Построение изображения

Урок. Формирование изображения на сетчатке

1. Оптическая система глаза. Аккомодация

Епосредственно за зрачком располагается прозрачный хрусталик, имеющий форму двояковыпуклой линзы. Хрусталик эластичен, он может менять свою кривизну с помощью специальной ресничной мышцы , которая при сокращении ослабляет цинновы связки, которые прикрепляются к хрусталику. Хрусталик в силу своей природной упругости становится более выпуклым. Когда ресничная мышца расслаблена (например, когда человек смотрит вдаль), цинновы связки растягивают хрусталик, он уплощается. Пространство позади хрусталика заполнено прозрачной желеобразной массой - стекловидным телом.

Световые лучи от предметов проходят через роговицу, жидкость передней камеры глаза, зрачок, жидкость задней камеры глаза, хрусталик и стекловидное тело. У людей с нормальным зрением

лучи попадают точно на сетчатку и образуют на ней четкие изображения предметов.

Но одновременно видеть с одинаковой четкостью близко и далеко расположенные предметы мы не можем. В каждый момент времени хрусталик глаза приспосабливается либо к ближнему, либо к дальнему видению. Это достигается быстрым изменением кривизны хрусталика и называется аккомодацией . Попробуйте, рассматривая одним глазом удаленные предметы, одновременно рассмотреть карандаш, расположенный от глаза на расстоянии 20 см. Его изображение покажется вам расплывчатым.

Изображение на сетчатке получается хотя и четким, но перевернутым. Почему же мы тогда не видим все вокруг нас перевернутым вверх ногами? Один австрийский ученый изобрел специальные очки, переворачивающие изображение на сетчатке. Он их носил постоянно. Первое время он видел все предметы вверх ногами, но вскоре вновь научился видеть их нормально. В этих очках он смог даже научиться ездить на велосипеде. Но стоило ему снять очки, как первое время он снова видел все окружающие предметы перевернутыми. Значит, такая особенность нашего глаза исправляется с помощью обучения и тренировки, в которой участвуют не только зрительный, но и другие анализаторы. Следовательно, зрительное восприятие окружающего мира основывается не только на самих зрительных ощущениях, а использует сведения от других анализаторов. Среди них главную роль выполняют органы равновесия, мышечного и кожного чувства. В результате взаимодействия этих анализаторов возникают целостные образы внешних предметов и явлений.

При изменении интенсивности освещенности происходит рефлекторное изменение диаметра зрачка. Снижение интенсивности освещения рефлекторно расширяет диаметр зрачка. Мышцы-сфинктеры, суживатели находятся в радужке и иннервируются парасимпатическими нервами, радиальные мышцы, расширители зрачка иннервируются симпатическими нервами, поэтому страх и боль приводят к расширению зрачков, недаром говорят: «У страха глаза велики».

2

Сетчатка глаза

Сетчатка имеет толщину 0,15-0,20 мм и состоит из нескольких слоев нервных клеток. Первый слой сетчатки непосредственно прилегает к черным пигментным клеткам. Этот слой образован зрительными рецепторами - палочками и колбочками . В сетчатке глаза человека палочек в десятки раз больше, чем колбочек (130 млн на 7 млн). Палочки возбуждаются очень быстро слабым сумеречным светом, и обеспечивают черно-белое видение. В мембране палочек находится пигмент родопсин , под действием света он разрушается и палочки возбуждаются. Для образования родопсина

необходим витамин А . При его недостатке палочки не возбуждаются и в сумерках человек плохо видит, развивается «куриная слепота» . У кур из рецепторов – только колбочки, в темноте они видят очень плохо. Колбочки возбуждаются медленнее и только ярким светом, они обеспечивают цветное видение. Колбочки бывают трех типов – красночувствительные, сине- и зеленочувствительные и содержат пигмент йодопсин . Палочки сравнительно равномерно распределены по сетчатке.

Рямо напротив зрачка в сетчатке находится желтое пятно , в состав которого входят исключительно колбочки. Поэтому наиболее отчетливо мы различаем те предметы, изображения которых попадают прямо на желтое пятно. С помощью глазных мышц мы можем управлять движением глаз и изменять направление взора. Но всегда при рассматривании нового предмета происходит перемещение взора так, чтобы изображение частей предмета последовательно попадало на желтое пятно.

От нервных клеток сетчатки отходят длинные отростки. В одном месте сетчатки они собираются в пучок и образуют зрительный нерв . Более миллиона его волокон передают в мозг зрительную информацию в форме слабых нервных импульсов. Место на сетчатке, откуда выходит зрительный нерв, лишено рецепторов и называется поэтому слепым пятном . Каждый школьник может убедиться в его существовании с помощью простого опыта.

Ля этого используйте рисунок, на котором изображены на сплошном черном фоне белые круги и крестик. Возьмите учебник в вытянутую руку и поместите рисунок перед глазами на расстоянии 20-25 см. Закройте левый глаз, а правым глазом фиксируйте крестик, изображение которого при этом попадает на желтое пятно. Не сводя взгляда с крестика, медленно приближайте и удаляйте рисунок. Найдите такое положение рисунка, при котором один из белых кругов перестанет быть видимым.

Это произойдет тогда, когда его изображение попадает на слепое пятно. Заметьте, на каком расстоянии от глаз возникает эффект исчезновения одного из белых кругов, если проводить наблюдение правым и левым глазом.

Основные термины и понятия:

Хрусталик. Ресничная мышца. Цинновы связки. Стекловидное тело. Сетчатка. Палочки. Родопсин. Колбочки. Йодопсин. Желтое пятно. Зрительный нерв. Слепое пятно.

Карточка у доски:

    Человек смотрит вдаль. Что происходит с его ресничной мышцей и цинновыми связками?

    Человек читает книгу. Что происходит с его ресничной мышцей и цинновыми связками?

    Какое изображение получается на сетчатке?

    Что происходит с отверстием зрачка в темной комнате?

    Сетчатка состоит из трех слоев клеток. Где располагаются палочки и колбочки?

    Сколько палочек и колбочек в сетчатке?

    Какие рецепторы отвечают за черно-белое, какие за цветное видение?

    Какие пигменты находятся в палочках? Колбочках?

    Где в сетчатке больше всего колбочек?

    Где в сетчатке отсутствуют зрительные рецепторы?

Письменные карточки:

    Что характерно для бесполого и полового размножения?

    Почему для эволюции важно половое размножение?

    Сравните развитие зародышей человека и животных. Сделайте вывод.

    Дайте определения или раскройте понятия: Половые клетки. Семенники. Яичники. Маточные трубы. Матка. Фолликул. Желтое тело. Зигота. Оплодотворение.

Компьютерное тестирование:

Тест 1 . Человек смотрит вдаль. Что происходит с его ресничной мышцей и цинновыми связками:

Тест 2 . Человек читает книгу. Что происходит с его ресничной мышцей и цинновыми связками:

    Ресничная мышца расслаблена, связки тоже.

    Ресничная мышца расслаблена, связки натянуты.

    Ресничная мышца сокращена, связки натянуты.

    Ресничная мышца сокращена, связки расслаблены.

Тест 3 . Какое изображение получается на сетчатке?

    Перевернутое, уменьшенное.

    Неперевернутое, уменьшенное.

Тест 4 . Что происходит с отверстием зрачка в темной комнате?

    Ничего не происходит.

    Уменьшается.

    Увеличивается

Тест 5 . Сетчатка состоит из трех слоев клеток. Где располагаются палочки и колбочки?

    Ближе к стекловидному телу.

    Перед слоем пигментных клеток сетчатки.

    Между двумя слоями клеток сетчатки.

    Между склерой и сосудистой оболочкой.

Тест 6 . Сколько палочек и колбочек в сетчатке?

    Палочек – 130 млн, колбочек – 7 млн.

    Палочек – 7 млн, колбочек – 130 млн..

    Палочек – 130 млн, колбочек – 100 млн.

    Палочек – 7 млн, колбочек – 7 млн.

Тест 7 . Какие рецепторы отвечают за черно-белое, какие за цветное видение?

    За черно-белое – палочки, за цветное – колбочки.

    За черно-белое – колбочки, за цветное – палочки.

Тест 8 . Какие пигменты находятся в палочках? Колбочках?

    В палочках – йодопсин, в колбочках – родопсин.

    В палочках – родопсин, в колбочках – йодопсин.

Тест 9 . Где в сетчатке больше всего колбочек?

    В слепом пятне.

    На периферии глаза.

    Колбочки распределены в сетчатке равномерно.

    В желтом пятне.

Тест 10 . Где в сетчатке отсутствуют зрительные рецепторы?

    В слепом пятне.

    На периферии глаза.

    Зрительные рецепторы равномерно распределены по сетчатке.

    Глаз, глазное яблоко имеет почти шаровидную форму примерно 2,5 см в диаметре. Он состоит из нескольких оболочек, из них три – основные:

    • склера – внешняя оболочка,
    • сосудистая оболочка – средняя,
    • сетчатка – внутренняя.

    Рис. 1. Схематическое представление механизма аккомодации слева - фокусировка вдаль; справа - фокусировка на близкие предметы.

    Склера имеет белый цвет с молочным отливом, кроме передней ее части, которая прозрачна и называется роговицей. Через роговицу свет поступает в глаз. Сосудистая оболочка, средний слой, содержит кровеносные сосуды, по которым кровь поступает для питания глаза. Прямо под роговицей сосудистая оболочка переходит в радужную оболочку, которая и определяет цвет глаз. В центре ее находится зрачок. Функция этой оболочки – ограничивать поступление света в глаз при его высокой яркости. Это достигается сужением зрачка при высокой освещенности и расширением – при низкой. За радужной оболочкой расположен хрусталик, похожий на двояковыпуклую линзу, который улавливает свет, когда он проходит через зрачок и фокусирует его на сетчатке. Вокруг хрусталика сосудистая оболочка образует ресничное тело, в котором заложена мышца, регулирующая кривизну хрусталика, что обеспечивает ясное и четкое видение разноудаленных предметов. Достигается это следующим образом (рис.1).

    Зрачок представляет собой отверстие в центре радужной оболочки, через которое лучи света проходят внутрь глаза. У взрослого человека в спокойном состоянии диаметр зрачка при дневном свете равен 1,5 –2 мм, а в темноте увеличивается до7,5 мм. Основная физиологическая роль зрачка состоит в регулировании количества света, поступающего на сетчатку.

    Сужение зрачка (миоз) происходит при увеличении освещённости (это ограничивает световой поток, попадающий на сетчатку, и, следовательно, служит защитным механизмом), при рассматривании близко расположенных предметов, когда происходит аккомодация и сведение зрительных осей (конвергенция), а также во .

    Расширение зрачка (мидриаз) происходит при слабом освещении (что увеличивает освещённость сетчатки и тем самым повышает чувствительность глаза), а также при возбуждении , любых афферентных нервов, при эмоциональных реакциях напряжения, связанных с повышением тонуса симпатической , при психических возбуждениях, удушье, .

    Величина зрачка регулируется кольцевыми и радиальными мышцами радужки. Радиальная мышца, расширяющая зрачок, иннервируется симпатическим нервом, идущим от верхнего шейного узла. Кольцевая мышца, суживающая зрачок, иннервируется парасимпатическими волокнами глазодвигательного нерва.

    Рис 2. Схема строения зрительного анализатора

    1 – сетчатка, 2 – неперекрещенные волокна зрительного нерва, 3 – перекрещенные волокна зрительного нерва, 4 – зрительный тракт, 5 – наружнее коленчатое тело, 6 – латеральный корешок, 7 – зрительные доли.
    Наименьшее расстояние от предмета до глаза, на котором этот предмет ещё ясно видим, называется ближней точкой ясного видения, а наибольшее расстояние – дальней точкой ясного видения. При расположении предмета в ближней точке аккомодация максимальна, в дальней – аккомодация отсутствует. Разность преломляющих сил глаза при максимальной аккомодации и при её покое называют силой аккомодации. За единицу оптической силы принимается оптическая сила линзы с фокусным расстоянием 1 метр . Эта единица называется диоптрией. Для определения оптической силы линзы в диоптриях следует единицу разделить на фокусное расстояние в метрах. Величина аккомодации неодинакова у разных людей и колеблется в зависимости от возраста от 0 до 14 диоптрий.

    Для ясного видения предмета необходимо, чтобы лучи каждой его точки были сфокусированы на сетчатке. Если смотреть вдаль, то близкие предметы видны неясно, расплывчато, так как лучи от ближних точек фокусируются за сетчаткой. Видеть одновременно одинаково ясно предметы, удалённые от глаза на разное расстояние, невозможно.

    Рефракция (пре­ломление лучей) отражает способность оптической сис­темы глаза фокусировать изображение предмета на сет­чатке глаза. К особенностям преломляющих свойств любого глаза относится явление сферической аберрации . Оно заключается в том, что лучи, проходящие через перифери­ческие участки хрусталика, преломляются сильнее, чем лучи, иду­щие через центральные его части (рис. 65). Поэтому центральные и периферические лучи сходятся не в одной точке. Однако эта особенность преломления не мешает ясному видению предмета, так как радужная оболочка не пропускает лучи и тем самым устра­няются те из них, которые проходят через периферию хрусталика. Неодинаковое преломление лучей разной длины волны называют хроматической аберрацией .

    Преломляюшая сила оптической системы (рефракция), т. е. способность глаза преломлять, и измеряется в условных единицах - диоптриях. Диоптрия - это преломляющая сила линзы, в которой параллельные лучи после преломления собирают ся в фокусе на расстоянии1 м.

    Рис. 3. Ход лучей при различных видах клинической рефракции глаза a - эметропия (норма); b - миопия (близорукость); c - гиперметропия (дальнозоркость); d - астигматизм.

    Окружающий нас мир мы видим ясно, когда все отделы “работают” гармонично и без помех. Для того, чтобы изображение было резким, сетчатка, очевидно, должна находиться в заднем фокусе оптической системы глаза. Различные нарушения преломления световых лучей в оптической системе глаза, приводящие к расфокусировке изображения на сетчатке, называются аномалиями рефракции (аметропиями). К ним относятся близорукость, дальнозоркость, возрастная дальнозоркость и астигматизм (рис. 3).

    При нормальном зрении, которое называется эмметропическим, острота зрения, т.е. максимальная способность глаза различать отдельные детали объектов, обычно достигает одной условной единицы. Это означает, что че­ловек способен рассмотреть две отдельные точки, видимые под углом в 1 минуту.

    При аномалии рефракции острота зрения всегда ниже 1. Различают три основных вида аномалии рефрак­ции - астигматизм, близорукость (миопию) и дальнозор­кость (гиперметропию).

    При нарушениях рефракции возникают близорукость или дальнозоркость. Рефракция глаза изменяется с возрастом: она меньше нормальной у новорождённых, в пожилом возрасте может снова уменьшаться (так называемая старческая дальнозоркость или пресбиопия).

    Схема коррекции близорукости

    Астигматизм обусловлен тем, что в силу врожденных особенностей оптическая система глаза (роговица и хрус­талик) неодинаково преломляет лучи в разных направле­ниях (по горизонтальному или по вертикальному ме­ридиану). Иначе говоря, явление сферической аберрации у этих людей выражено значительно сильнее, чем обычно (и оно не компенсируется сужением зрачка). Так, если кривизна поверхности роговицы в вертикальном сечении больше, чем в горизонтальном, изображение на сетчатке не будет четким, независимо от расстояния до предмета.

    Роговица будет иметь как бы два главных фокуса: один - для вертикального сечения, другой - для горизон­тального. Поэтому лучи света, проходящие через астиг­матический глаз, будут фокусироваться в разных плоско­стях: если горизонтальные линии предмета будут сфоку­сированы на сетчатке, то вертикальные - впереди нее. Ношение цилиндрических линз, подобранных с учетом реального дефекта оптической системы, в определенной степени компенсирует эту аномалию рефракции.

    Близорукость и дально­зоркость обусловлены изменением длины глазного ябло­ка. При нормальной рефракции расстояние между рого­вицей и центральной ямкой (желтым пятном) составляет24,4 мм. При миопии (близорукости) продольная ось глаза больше24,4 мм, поэтому лучи от далекого объекта фокусируются не на сетчатке, а перед ней, в стекловид­ном теле. Чтобы ясно видеть вдаль, необходимо перед близорукими глазами поместить вогнутые стекла, кото­рые отодвинут сфокусированное изображение на сет­чатку. В дальнозорком глазу продольная ось глаза уко­рочена, т.е. меньше24,4 мм. Поэтому лучи от далекого объекта фокусируются не на сетчатке, а за ней. Этот недостаток рефракции может быть компенсирован акко­модационным усилием, т.е. увеличением выпуклости хру­сталика. Поэтому дальнозоркий человек напрягает акко­модационную мышцу, рассматривая не только близкие, но и далекие объекты. При рассматривании близких объектов аккомодационные усилия дальнозорких людей недостаточны. Поэтому для чтения дальнозоркие люди должны надевать очки с двояковыпуклыми линзами, уси­ливающими преломление света.

    Аномалии рефракции, в частности близорукость и дальнозоркость распространены и среди животных, на­пример, у лошадей; близорукость весьма часто наблюда­ется у овец, особенно культурных пород.

    С древних времен глаз был символом всеведения, тайного знания, мудрости и бдительности. И это неудивительно. Ведь именно благодаря зрению мы получаем большую часть информации об окружающем мире. С помощью глаз мы оцениваем размеры, форму, удаленность и взаиморасположение предметов, наслаждаемся многообразием красок и наблюдаем движение.

    Как устроено любознательное око?

    Человеческий глаз нередко сравнивают с фотоаппаратом. Роговица, прозрачная и выпуклая часть наружной оболочки, подобна линзе объектива. Вторая оболочка — сосудистая — спереди представлена радужкой, содержание пигмента в которой определяет цвет глаз. Отверстие в центре радужки — зрачок — суживаясь при ярком и расширяясь при тусклом освещении, регулирует количество света, поступающего внутрь глаза, подобно диафрагме. Вторая линза — подвижный и гибкий хрусталик окружен ресничной мышцей, которая изменяет степень его кривизны. Позади хрусталика расположено стекловидное тело — прозрачное студенистое вещество, которое поддерживает упругость и шаровидную форму глазного яблока. Лучи света, проходя сквозь внутриглазные структуры, падают на сетчатку — тончайшую оболочку из нервной ткани, выстилающую глаз изнутри. Фоторецепторы — светочувствительные клетки сетчатки, подобно фотопленке фиксируют изображение.

    Почему говорят, что мы «видим» мозгом?

    И все же орган зрения устроен гораздо сложнее самой современной фототехники. Ведь мы не просто фиксируем увиденное, а оцениваем ситуацию и реагируем словами, действиями и эмоциями.

    Правый и левый глаз видят предметы под разным углом. Головной мозг соединяет оба изображения воедино, в результате чего мы можем оценить объем предметов и их взаиморасположение.

    Таким образом, картина зрительного восприятия формируется в головном мозге.

    Почему, стараясь рассмотреть что-либо, мы обращаем взгляд в эту сторону?

    Наиболее четкое изображение формируется при попадании световых лучей в центральную зону сетчатки - макулу. Поэтому, стараясь рассмотреть что-либо повнимательнее, мы обращаем взгляд в соответствующую сторону. Свободное движение каждого глаза во всех направлениях обеспечивается работой шести мышц.

    Веки, ресницы и брови — не только красивое обрамление?

    Глазное яблоко защищено от внешних воздействий костными стенками орбиты, мягкой жировой клетчаткой, выстилающей ее полость, и веками.

    Мы прищуриваемся, стараясь уберечь глаза от слепящего света, иссушающего ветра и пыли. Густые ресницы при этом смыкаются, образуя защитный барьер. А брови предназначены задерживать капельки пота, стекающие со лба.

    Конъюнктива — тонкая слизистая оболочка, покрывающая глазное яблоко и внутреннюю поверхность век, содержит сотни мельчайших желёзок. Они вырабатывают «смазку», которая обеспечивает свободное движение век при смыкании и защищает роговицу от высыхания.

    Аккомодация глаза

    Как формируется изображение на сетчатке?

    Для того чтобы понять, как формируется изображение на сетчатке, необходимо вспомнить, что при прохождении из одной прозрачной среды в другую световые лучи преломляются (т.е. отклоняются от прямолинейного распространения).

    Прозрачными средами в глазу являются роговица с покрывающей ее слезной пленкой, водянистая влага, хрусталик и стекловидное тело. Наибольшей преломляющей силой обладает роговица, вторая по силе линза - хрусталик. Слезная пленка, водянистая влага и стекловидное тело обладают пренебрежимо малой преломляющей способностью.

    Проходя сквозь внутриглазные среды, световые лучи преломляются и сходятся на сетчатке, формируя четкое изображение.

    Что такое аккомодация?

    Любая попытка перевести взгляд приводит к дефокусированию изображения и требует дополнительной настройки оптической системы глаза. Она осуществляется за счет аккомодации - изменения преломляющей силы хрусталика.

    Подвижный и гибкий хрусталик прикреплен с помощью волокон цинновой связки к цилиарной мышце. При зрении вдаль мышца расслаблена, волокна цинновой связки находятся в натянутом состоянии, не позволяя хрусталику принять выпуклую форму. При попытке рассмотреть предметы вблизи цилиарная мышца сокращается, мышечный круг суживается, циннова связка расслабляется и хрусталик приобретает выпуклую форму. Тем самым увеличивается его преломляющая способность, и на сетчатке фокусируются предметы, расположенные на близком расстоянии. Этот процесс называется аккомодацией.

    Почему нам кажется, что «с возрастом руки становятся короче»?

    С возрастом хрусталик теряет свои эластические свойства, становится плотным и с трудом изменяет свою преломляющую способность. В результате мы постепенно утрачиваем способность к аккомодации, что затрудняет работу на близком расстоянии. При чтении мы стараемся отодвинуть газету или книгу дальше от глаз, но скоро длина рук оказывается недостаточной для обеспечения четкого зрения.

    Для коррекции пресбиопии применяют собирающие линзы, сила которых увеличивается с возрастом.

    Нарушения зрения

    У 38% жителей нашей страны выявляются нарушения зрения, требующие очковой коррекции.

    В норме оптическая система глаза способна преломлять световые лучи таким образом, чтобы они сходились точно на сетчатке, обеспечивая четкое зрение. Для того чтобы сфокусировать изображение на сетчатке, глазу с нарушением рефракции требуется дополнительная линза.

    Какие бывают нарушения зрения?

    Преломляющая сила глаза определяется двумя основными анатомическими факторами: длиной переднезадней оси глаза и кривизной роговицы.

    Близорукость или миопия. Если длина оси глаза увеличена или роговица имеет большую преломляющую силу, изображение формируется перед сетчаткой. Такое нарушение зрения называется близорукостью или миопией. Близорукие хорошо видят на близком расстоянии и плохо вдаль. Коррекция достигается ношением очков с рассеивающими (минусовыми) линзами.

    Дальнозоркость или гиперметропия. Если длина оси глаза уменьшена или преломляющая сила роговицы невелика, изображение формируется в мнимой точке позади сетчатки. Такое нарушение зрения называется дальнозоркостью или гиперметропией. Существует ошибочное мнение, что дальнозоркие хорошо видят вдаль. Они испытывают трудности при работе на близком расстоянии и нередко плохо видят вдаль. Коррекция достигается ношением очков с собирающими (плюсовыми) линзами.

    Астигматизм. При нарушении сферичности роговицы существует разница в преломляющей силе по двум главным меридианам. Изображение предметов на сетчатке искаженное: одни линии четкие, другие размытые. Такое нарушение зрения называется астигматизмом и требует ношения очков с цилиндрическими линзами.

    Глаз состоит из глазного яблока диаметром 22-24 мм, покрытого непрозрачной оболочкой, склерой, а спереди — прозрачной роговицей (или роговой оболочкой ). Склера и роговица защищают глаз и служат для крепления глазо-двигательных мышц.

    Радужная оболочка — тонкая сосудистая пластинка, ограничивающая проходящий пучок лучей. Свет проникает в глаз через зрачок. В зависимости от освещения диаметр зрачка может изменяться от 1 до 8 мм.

    Хрусталик представляет собой эластичную линзу, которая крепится на мышцах ресничного тела. Ресничное тело обеспечивает изменение формы хрусталика. Хрусталик разделяет внутреннюю поверхность глаза на переднюю камеру, заполненную водянистой влагой, и заднюю камеру, заполненную стекловидным телом.

    Внутренняя поверхность задней камеры покрыта светочувствительным слоем — сетчаткой. От сетчатки световой сигнал передается в мозг по зрительному нерву. Между сетчаткой и склерой находится сосудистая оболочка, состоящая из сети кровеносных сосудов, питающих глаз.

    На сетчатке имеется желтое пятно — участок наиболее ясного видения. Линия, проходящая через центр желтого пятна и центр хрусталика, называется зрительной осью. Она отклонена от оптической оси глаза вверх на угол около 5 градусов. Диаметр желтого пятна — около 1 мм, а соответствующее ему поле зрения глаза — 6-8 градусов.

    Сетчатка покрыта светочувствительными элементами: палочками и колбочками. Палочки более чувствительны к свету, но не различают цветов и служат для сумеречного зрения. Колбочки чувствительны к цветам, но менее чувствительны к свету и поэтому служат для дневного зрения. В области желтого пятна преобладают колбочки, а палочек мало; к периферии сетчатки, наоборот, число колбочек быстро уменьшается, и остаются только палочки.

    В середине желтого пятна находится центральная ямка. Дно ямки выстлано только колбочками. Диаметр центральной ямки — 0,4 мм, поле зрения — 1 градус.

    В желтом пятне к большинству колбочек подходят отдельные волокна зрительного нерва. Вне желтого пятна одно волокно зрительного нерва обслуживает группу колбочек или палочек. Поэтому в области ямки и желтого пятна глаз может различать тонкие детали, а изображение, попадающее на остальные места сетчатки, становится менее четким. Периферическая часть сетчатки служит в основном для ориентирования в пространстве.

    В палочках находится пигмент родопсин, собирающийся в них в темноте и выцветающий на свету. Восприятие света палочками обусловлено химическими реакциями под действием света на родопсин. Колбочки реагируют на свет за счет реакции йодопсина.

    Кроме родопсина и йодопсина на задней поверхности сетчатки имеется пигмент черного цвета. При свете этот пигмент проникает в слои сетчатки и, поглощая значительную часть световой энергии, защищает палочки и колбочки от сильного светового воздействия.

    На месте ствола зрительного нерва располагается слепое пятно. Этот участок сетчатки не чувствителен к свету. Диаметр слепого пятна — 1,88 мм, что соответствует полю зрения 6 градусов. Это значит, что человек с расстояния 1 м может не увидеть предмета диаметром 10 см, если его изображение проектируется на слепое пятно.

    Оптическая система глаза состоит из роговицы, водянистой влаги, хрусталика и стекловидного тела. Преломление света в глазе происходит, главным образом, на роговице и поверхностях хрусталика.

    Свет от наблюдаемого предмета проходит через оптическую систему глаза и фокусируется на сетчатке, образуя на ней обратное и уменьшенное изображение (мозг «переворачивает» обратное изображение, и оно воспринимается как прямое).

    Показатель преломления стекловидного тела больше единицы, поэтому фокусные расстояния глаза во внешнем пространстве (переднее фокусное расстояние) и внутри глаза (заднее фокусное расстояние) неодинаковы.

    Оптическая сила глаза (в диоптриях) вычисляется как обратное заднее фокусное расстояние глаза, выраженное в метрах. Оптическая сила глаза зависит от того, находится ли он в состоянии покоя (58 диоптрий для нормального глаза) или в состоянии наибольшей аккомодации (70 диоптрий).

    Аккомодация — это способность глаза четко различать предметы, находящиеся на разных расстояниях. Аккомодация происходит за счет изменения кривизны хрусталика при натяжении или расслаблении мышц ресничного тела. Когда ресничное тело натянуто, хрусталик растягивается, и его радиусы кривизны увеличиваются. При уменьшении натяжения мышцы кривизна хрусталика увеличивается под действием упругих сил.

    В свободном, ненапряженном состоянии нормального глаза на сетчатке получаются ясные изображения бесконечно удаленных предметов, а при наибольшей аккомодации видны самые близкие предметы.

    Положение предмета, при котором создается резкое изображение на сетчатке для ненапряженного глаза, называют дальней точкой глаза.

    Положение предмета, при котором создается резкое изображение на сетчатке при наибольшем возможном напряжении глаза, называют ближней точкой глаза.

    При аккомодации глаза на бесконечность задний фокус совпадает с сетчаткой. При наибольшем напряжении на сетчатке получается изображение предмета, находящегося на расстоянии около 9 см.

    Разность обратных величин расстояний между ближней и дальней точкой называют диапазоном аккомодации глаза (измеряется в диоптриях).

    С возрастом способность глаза к аккомодации уменьшается. В возрасте 20 лет для среднего глаза ближняя точка находится на расстоянии около 10 см (диапазон аккомодации 10 диоптрий), в 50 лет ближняя точка располагается на расстоянии уже около 40 см (диапазон аккомодации 2,5 диоптрии), а к 60 годам уходит на бесконечность, то есть аккомодация прекращается. Это явление называется возрастной дальнозоркостью или пресбиопией.

    Расстояние наилучшего зрения — это расстояние, на котором нормальный глаз испытывает наименьшее напряжение при рассматривании деталей предмета. При нормальном зрении оно составляет в среднем 25-30 см.

    Приспособление глаза к изменившимся условиям освещенности называется адаптацией. Адаптация происходит за счет изменения диаметра отверстия зрачка, перемещения черного пигмента в слоях сетчатки и различной реакцией на свет палочек и колбочек. Сокращение зрачка происходит за 5 секунд, а его полное расширение — за 5 минут.

    Темновая адаптация происходит при переходе от больших яркостей к малым. При ярком свете работают колбочки, палочки же «ослеплены», родопсин выцвел, черный пигмент проник в сетчатку, заслоняя колбочки от света. При резком снижении яркости отверстие зрачка раскрывается, пропуская больший световой поток. Затем из сетчатки уходит черный пигмент, родопсин восстанавливается, и когда его становится достаточно, начинают функционировать палочки. Так как колбочки не чувствительны к слабым яркостям, то сначала глаз ничего не различает. Чувствительность глаза достигает максимального значения через 50-60 минут пребывания в темноте.

    Световая адаптация — это процесс приспособления глаза при переходе от малых яркостей к большим. Сначала палочки сильно раздражены, «ослеплены» из-за быстрого разложения родопсина. Колбочки, не защищенные еще зернами черного пигмента, также раздражены слишком сильно. Через 8-10 минут чувство ослепления прекращается, и глаз снова видит.

    Поле зрения глаза достаточно широкое (125 градусов по вертикали и 150 градусов по горизонтали), но для ясного различения используется только его малая часть. Поле наиболее совершенного зрения (соответствующее центральной ямке) — около 1-1,5°, удовлетворительного (в области всего желтого пятна) — около 8° по горизонтали и 6° по вертикали. Вся остальная часть поля зрения служит для грубого ориентирования в пространстве. Для обозрения окружающего пространства глазу приходится совершать непрерывное вращательное движение в своей орбите в пределах 45-50°. Это вращение приводит изображения различных предметов на центральную ямку и дает возможность рассмотреть их детально. Движения глаза совершаются без участия сознания и, как правило, не замечаются человеком.

    Угловой предел разрешения глаза — это минимальный угол, при котором глаз наблюдает раздельно две светящиеся точки. Угловой предел разрешения глаза составляет около 1 минуты и зависит от контраста предметов, освещенности, диаметра зрачка и длины волны света. Кроме того, предел разрешения увеличивается при удалении изображения от центральной ямки и при наличии дефектов зрения.

    Дефекты зрения и их коррекция

    При нормальном зрении дальняя точка глаза бесконечно удалена. Это означает, что фокусное расстояние расслабленного глаза равно длине оси глаза, и изображение попадает точно на сетчатку в области центральной ямки.

    Такой глаз хорошо различает предметы вдали, а при достаточной аккомодации — и вблизи.

    Близорукость

    При близорукости лучи от бесконечно удаленного предмета фокусируются перед сетчаткой, поэтому на сетчатке формируется размытое изображение.

    Чаще всего это происходит из-за удлинения (деформации) глазного яблока. Реже близорукость возникает при нормальной длине глаза (около 24 мм) из-за слишком большой оптической силы оптической системы глаза (более 60 диоптрий).

    В обоих случаях изображение от удаленных предметов находится внутри глаза, а не на сетчатке. На сетчатку попадает только фокус от близко расположенных к глазу предметов, то есть дальняя точка глаза находится на конечном расстоянии перед ним.

    Дальняя точка глаза

    Близорукость корректируется при помощи отрицательных линз, которые строят изображение бесконечно удаленной точки в дальней точке глаза.

    Дальняя точка глаза

    Близорукость чаще всего появляется в детском и подростковом возрасте, причем по мере роста глазного яблока в длину близорукость увеличивается. Истинной близорукости, как правило, предшествует так называемая ложная близорукость — следствие спазма аккомодации. В этом случае можно восстановить нормальное зрение при помощи средств, расширяющих зрачок и снимающих напряжение ресничной мышцы.

    Дальнозоркость

    При дальнозоркости лучи от бесконечно удаленного предмета фокусируются за сетчаткой.

    Дальнозоркость вызывается слабой оптической силой глаза для данной длины глазного яблока: либо короткий глаз при нормальной оптической силе, либо малая оптическая сила глаза при нормальной длине.

    Чтобы сфокусировать изображение на сетчатке, приходится все время напрягать мышцы ресничного тела. Чем ближе предметы к глазу, тем все дальше за сетчатку уходит их изображение и тем больше требуется усилий мышц глаза.

    Дальняя точка дальнозоркого глаза находится за сетчаткой, т. е. в расслабленном состоянии он может четко увидеть лишь предмет, который находится позади него.

    Дальняя точка глаза

    Конечно, поместить предмет за глаз нельзя, но можно спроецировать туда его изображение при помощи положительных линз.

    Дальняя точка глаза

    При небольшой дальнозоркости зрение вдаль и вблизи хорошее, но могут быть жалобы на быструю утомляемость и головную боль при работе. При средней степени дальнозоркости зрение вдаль остается хорошим, а вблизи затруднено. При высокой дальнозоркости плохим становится зрение и вдаль, и вблизи, так как исчерпаны все возможности глаза фокусировать на сетчатке изображение даже далеко расположенных предметов.

    У новорожденного глаз немного сдавлен в горизонтальном направлении, поэтому у глаза есть небольшая дальнозоркость, которая проходит по мере роста глазного яблока.

    Аметропия

    Аметропия (близорукость или дальнозоркость) глаза выражается в диоптриях как величина, обратная расстоянию от поверхности глаза до дальней точки, выраженной в метрах.

    Оптическая сила линзы, необходимая для коррекции близорукости или дальнозоркости, зависит от расстояния от очков до глаза. Контактные линзы располагаются вплотную к глазу, поэтому их оптическая сила равна аметропии.

    Например, если при близорукости дальняя точка находится перед глазом на расстоянии 50 см, то для ее исправления нужны контактные линзы с оптической силой в −2 диоптрии.

    Слабая степень аметропии считается до 3 диоптрий, средняя — от 3 до 6 диоптрий и высокая степень — выше 6 диоптрий.

    Астигматизм

    При астигматизме фокусные расстояния глаза различны в разных сечениях, проходящих через его оптическую ось. При астигматизме в одном глазу сочетаются эффекты близорукости, дальнозоркости и нормального зрения. Например, глаз может быть близоруким в горизонтальном сечении и дальнозорким в вертикальном сечении. Тогда на бесконечности он не сможет видеть ясно горизонтальных линий, а вертикальные будет четко различать. На близком расстоянии, наоборот, такой глаз хорошо видит вертикальные линии, а горизонтальные будут расплывчатыми.

    Причина астигматизма либо в неправильной форме роговицы, либо в отклонении хрусталика от оптической оси глаза. Астигматизм чаще всего является врожденным, но может стать следствием операции или глазной травмы. Кроме дефектов зрительного восприятия, астигматизм обычно сопровождается быстрой утомляемостью глаз и головными болями. Астигматизм корректируется при помощи цилиндрических (собирательных или рассеивающих) линз в сочетании со сферическими линзами.

    Посредством глаза, а не глазом
    Смотреть на мир умеет разум.
    Уильям Блейк

    Цели урока:

    Образовательные:

    • раскрыть строение и значение зрительного анализатора, зрительных ощущений и восприятия;
    • углубить знания о строении и функции глаза как об оптической системе;
    • объяснить, как формируется изображение на сетчатке,
    • дать представление о близорукости и дальнозоркости, о видах коррекции зрения.

    Развивающие:

    • формировать умения наблюдать, сопоставлять и делать выводы;
    • продолжать развивать логическое мышление;
    • продолжать формировать представление о единстве понятий окружающего мира.

    Воспитательные:

    • воспитывать бережное отношение к своему здоровью, раскрыть вопросы гигиены зрения;
    • продолжать вырабатывать ответственное отношение к учёбе.

    Оборудование:

    • таблица "Зрительный анализатор",
    • разборная модель глаза,
    • влажный препарат "Глаз млекопитающих",
    • раздаточный материал с иллюстрациями.

    Ход урока

    1. Организационный момент.

    2. Актуализация знаний. Повторение темы "Строение глаза".

    3. Объяснение нового материала:

    Оптическая система глаза.

    Сетчатка. Формирование изображений на сетчатке.

    Оптические иллюзии.

    Аккомодация глаза.

    Преимущество зрения двумя глазами.

    Движение глаз.

    Дефекты зрения, их коррекция.

    Гигиена зрения.

    4. Закрепление.

    5. Итоги урока. Постановка домашнего задания.

    Повторение темы "Строение глаза".

    Учитель биологии:

    На прошлом уроке мы изучили тему "Строение глаза". Давайте вспомним материал этого урока. Продолжите фразу:

    1) Зрительная зона полушарий большого мозга расположена в …

    2) Цвет глазу придаёт …

    3) Анализатор состоит из …

    4) Вспомогательными органами глаза являются …

    5) Глазное яблоко имеет … оболочек

    6) Выпукло - вогнутой линзой глазного яблока является …

    Пользуясь рисунком, расскажите об устройстве и назначении составляющих частей глаза.

    Объяснение нового материала.

    Учитель биологии:

    Глаз - орган зрения животных и человека. Это самонастраивающийся прибор. Он позволяет видеть близкие и удалённые предметы. Хрусталик то сжимается почти в шарик, то растягивается, тем самым, меняя фокусное расстояние.

    Оптическую систему глаза составляют роговица, хрусталик, стекловидное тело.

    Сетчатка (сетчатая оболочка, покрывающая глазное дно) имеет толщину 0,15 -0,20 мм и состоит из нескольких слоёв нервных клеток. Первый слой прилегает к чёрным пигментным клеткам. Он образован зрительными рецепторами - палочками и колбочками. В сетчатке глаза человека палочек в сотни раз больше, чем колбочек. Палочки возбуждаются очень быстро слабым сумеречным светом, но не могут воспринимать цвет. Колбочки возбуждаются медленно и только ярким светом - они способны воспринимать цвет. Палочки равномерно распределяются по сетчатке. Прямо напротив зрачка в сетчатке находится жёлтое пятно, в состав которого входят исключительно колбочки. При рассмотрении предмета происходит перемещение взора так, что изображение попадает на жёлтое пятно.

    От нервных клеток отходят отростки. В одном месте сетчатки они собираются в пучок и образуют зрительный нерв. Более миллиона волокон передают в мозг зрительную информацию в форме нервных импульсов. Это место, лишённое рецепторов, называют слепым пятном. Начавшийся в сетчатке анализ цвета, формы, освещённости предмета, его деталей заканчивается в зоне коры. Здесь собирается вся информация, она расшифровывается и обобщается. В результате складывается представление о предмете. "Видит" мозг, а не глаз.

    Итак, зрение - это подкорковый процесс. Он зависит от качества информации, поступающей от глаз в кору больших полушарий (затылочная область).

    Учитель физики:

    Мы выяснили, что оптическую систему глаза составляют роговица, хрусталик и стекловидное тело. Свет, преломляясь в оптической системе, даёт на сетчатке действительные, уменьшенные, обратные изображения рассматриваемых предметов.

    Первым, кто доказал, что изображение на сетчатке глаза является перевёрнутым, построив ход лучей в оптической системе глаза, был Иоганн Кеплер (1571 - 1630). Чтобы проверить этот вывод, французский учёный Рене Декарт (1596 - 1650) взял глаз быка и, соскоблив с его задней стенки непрозрачный слой, поместил в отверстии, проделанном в оконном ставне. И тут же на полупрозрачной стенке глазного дна он увидел перевёрнутое изображение картины, наблюдавшейся из окна.

    Почему же тогда мы видим все предметы такими, как они есть, т.е. неперевёрнутыми?

    Дело в том, что процесс зрения непрерывно корректируется мозгом, получающим информацию не только через глаза, но и через другие органы чувств.

    В 1896 году американский психолог Дж. Стреттон поставил на себе эксперимент. Он надел специальные очки, благодаря которым на сетчатке глаза изображения окружающих предметов оказались не обратными, а прямыми. И что же? Мир в сознании Стреттона перевернулся. Все предметы он стал видеть вверх ногами. Из-за этого произошло рассогласование в работе глаз с другими органами чувств. У учёного появились симптомы морской болезни. В течение трёх дней он ощущал тошноту. Однако на четвёртые сутки организм стал приходить в норму, а на пятый день Стреттон стал чувствовать так же, как и до эксперимента. Мозг учёного освоился с новыми условиями работы, и все предметы он снова стал видеть прямыми. Но, когда он снял очки, всё опять перевернулось. Уже через полтора часа зрение восстановилось, и он снова стал видеть нормально.

    Любопытно, что подобное приспособление характерно лишь для человеческого мозга. Когда в одном из экспериментов переворачивающие очки одели обезьяне, то она получила такой психологический удар, что, сделав несколько неверных движений и упав, пришла в состояние, напоминающее кому. У неё стали угасать рефлексы, упало кровяное давление и дыхание стало частым и поверхностным. У человека ничего подобного не наблюдается. Однако, и человеческий мозг не всегда способен справиться с анализом изображения, получающегося на сетчатке глаза. В таких случаях возникают иллюзии зрения - наблюдаемый предмет нам кажется не таким, каков он есть на самом деле.

    Наши глаза познавать не умеют природу предметов. А потому не навязывай им заблуждений рассудка. (Лукреций)

    Зрительные самообманы

    Мы часто говорим об "обмане зрения", "обмане слуха", но выражения эти неправильны. Обманов чувств нет. Философ Кант метко сказал по этому поводу: "Чувства не обманывают нас, - не потому, что они всегда правильно судят, а потому, что вовсе не судят".

    Что же тогда обманывает нас при так называемых "обманах" чувств? Разумеется то, что в данном случае "судит", т.е. наш собственный мозг. Действительно, большая часть обманов зрения зависит исключительно оттого, что мы не только видим, но и бессознательно рассуждаем, причём невольно вводим себя в заблуждение. Это - обманы суждения, а не чувств.

    Галерея образов, или что вы видите

    Дочь, мать и усатый отец?

    Индеец, гордо смотрящий на солнце и эскимос в капюшоне, повёрнутый спиной...

    Молодой и пожилой мужчины

    Молодая и старая женщины

    Параллельны ли линии?

    Является ли четырехугольник квадратом?

    Который эллипс больше - нижний или внутренний верхний?

    Что больше в этой фигуре - высота или ширина?

    Какая прямая является продолжением первой?

    Замечаете ли вы "дрожание" круга?

    Есть ещё одна особенность зрения, о которой нельзя не сказать. Известно, что при изменении расстояния от линзы до предмета меняется и расстояние до его изображения. Каким же образом на сетчатке сохраняется чёткое изображение, когда мы переводим свой взгляд с удалённого предмета на более близкий?

    Как вам стало известно, мышцы, которые прикреплены к хрусталику, способны изменять кривизну его поверхностей и тем самым оптическую силу глаза. Когда мы смотрим на далёкие предметы, эти мышцы находятся в расслабленном состоянии и кривизна хрусталика оказывается сравнительно небольшой. При переводе взгляда на близлежащие предметы глазные мышцы сжимают хрусталик, и его кривизна, а, следовательно, и оптическая сила, увеличиваются.

    Способность глаза приспосабливаться к видению, как на близком, так и на более далёком расстоянии называется аккомодацией (от лат. accomodatio - приспособление).

    Благодаря аккомодации человеку удаётся фокусировать изображения различных предметов на одном и том же расстоянии от хрусталика - на сетчатке глаза.

    Однако при очень близком расположении рассматриваемого предмета напряжение мышц, деформирующих хрусталик, усиливается, и работа глаза становится утомительной. Оптимальное расстояние при чтении и при письме для нормального глаза составляет около 25 см. Это расстояние называют расстоянием наилучшего зрения.

    Учитель биологии:

    Какое преимущество даёт зрение двумя глазами?

    1. Увеличивается поле зрения человека.

    2. Именно благодаря наличию двух глаз мы можем различать, какой предмет находится ближе, какой дальше от нас.

    Дело в том, что на сетчатке правого и левого глаза получаются отличающиеся друг от друга изображения (соответствующие взгляду на предметы как бы справа и слева). Чем ближе предмет, тем заметнее это различие. Оно и создаёт впечатление разницы в расстояниях. Эта же способность глаза позволяет видеть предмет объёмным, а не плоским. Такая способность получила название стереоскопического зрения. Совместная работа обоих мозговых полушарий обеспечивает различение предметов, их формы, величины, расположения, перемещения. Эффект объёмного пространства может возникнуть в тех случаях, когда мы рассматриваем плоскую картину.

    В течение нескольких минут рассматривайте картинку на расстоянии 20 - 25 см от глаз.

    В течение 30 с смотри на ведьму на метле не отрываясь.

    Быстро смести взгляд на рисунок замка и смотри, считая до 10, в проём ворот. В проёме ты увидишь белую ведьму на сером фоне.

    Когда вы рассматриваете свои глаза в зеркале, то, наверное, замечаете, что и крупные и едва заметные движения оба глаза осуществляют строго одновременно, в одном и том же направлении.

    Всегда ли глаза так всё осматривают? Как мы ведём себя в уже знакомой комнате? Для чего же нам нужны движения глаз? Они нужны для первоначального осмотра. Осматривая, мы формируем целостный образ, и всё это передаётся на хранение в память. Поэтому для узнавания хорошо известных предметов движение глаз необязательно.

    Учитель физики:

    Одной из основных характеристик зрения является острота. Зрение людей меняется с возрастом, т.к. хрусталик теряет эластичность, способность менять свою кривизну. Появляются дальнозоркость или близорукость.

    Близорукость - это недостаток зрения, при котором параллельные лучи после преломления в глазу собираются не на сетчатке, а ближе к хрусталику. Изображения удалённых предметов поэтому оказываются на сетчатке нечёткими, расплывчатыми. Чтобы на сетчатке получилось резкое изображение, рассматриваемый предмет необходимо приблизить к глазу.

    Расстояние наилучшего зрения для близорукого человека меньше 25 см. поэтому люди с подобным недостатком рения вынуждены читать текст, располагая его близко к глазам. Близорукость может быть обусловлена следующими причинами:

    • избыточной оптической силы глаза;
    • удлинением глаза вдоль его оптической оси.

    Развивается она обычно в школьные годы и связана, как правило, с продолжительным чтением или письмом, особенно при недостаточном освещении и неправильном расположении источников света.

    Дальнозоркость - это недостаток зрения, при котором параллельные лучи после преломления в глазу сходятся под таким углом, что фокус оказывается расположенным не на сетчатке, а за ней. Изображения удалённых предметов на сетчатке при этом снова оказываются нечёткими, расплывчатыми.

    Учитель биологии:

    Для профилактики зрительного утомления существует ряд комплексов упражнений. Предлагаем вам некоторые из них:

    Вариант 1 (продолжительность 3-5 минут).

    1. Исходное положение - сидя в удобной позе: позвоночник прямой, глаза открыты, взгляд устремлён прямо. Выполнять совсем легко, без напряжения.

    Взгляд направить влево - прямо, вправо - прямо, вверх - прямо, вниз - прямо, без задержки в отведенном положении. Повторить 1-10 раз.

    2. Взгляд смещать по диагонали: влево - вниз - прямо, вправо - вверх - прямо, вправо - вниз - прямо, влево - вверх - прямо. И постепенно увеличивать задержки в отведенном положении, дыхание произвольное, но следить, чтобы не было его задержки. Повторить 1-10 раз.

    3. Круговые движения глаз: от 1 до 10 кругов влево и вправо. Вначале быстрее, потом постепенно снижать темп.

    4. Смотреть на кончик пальца или карандаша, удерживаемого на расстоянии 30 см от глаз, а затем вдаль. Повторить несколько раз.

    5. Смотреть прямо перед собой пристально и неподвижно, стараясь видеть более ясно, затем моргнуть несколько раз. Сжать веки, затем моргнуть несколько раз.

    6. Изменение фокусного расстояния: смотреть на кончик носа, затем вдаль. Повторить несколько раз.

    7. Массировать веки глаз, мягко поглаживая их указательным и средним пальцем в направлении от носа к вискам. Или: глаза закрыть и подушечками ладони, очень нежно касаясь, проводить по верхним векам от висков к переносице и обратно, всего 10 раз в среднем темпе.

    8. Потереть ладони друг о друга и легко, без усилий прикрыть ими предварительно закрытые глаза, чтобы полностью загородить их от света на 1 мин. Представить погружение в полную темноту. Открыть глаза.

    Вариант 2 (продолжительность 1-2 мин).

    1. При счете 1-2 фиксация глаз на близком (расстояние 15-20 см) объекте, при счёте 3-7 взгляд переводится на дальний объект. При счёте 8 взгляд снова переводится на ближний объект.

    2. При неподвижной голове на счёт 1 поворот глаз по вертикали вверх, при счёте 2-вниз, затем снова вверх. Повторить 10-15 раз.

    3. Закрыть глаза на 10-15 секунд, открыть и проделать движения глазами вправо и влево, затем вверх и вниз (5 раз). Свободно, без напряжения направить взгляд вдаль.

    Вариант 3 (продолжительность 2-3 минуты).

    Упражнения выполняются в положении "сидя" откинувшись на спинку стула.

    1. Смотреть прямо перед собой в течение 2-3 секунд, затем на 3-4 секунды опустить глаза вниз. Повторить упражнение в течение 30 секунд.

    2. Поднять глаза вверх, опустить их вниз, отвести глаза вправо, потом влево. Повторить 3-4 раза. Продолжительность 6 секунд.

    3. Поднять глаза вверх, сделать ими круговые движения против часовой стрелки, потом по часовой стрелки. Повторить 3-4 раза.

    4. Крепко зажмурить глаза на 3-5 секунд, открыть на 3-5 секунд. Повторить 4-5 раз. Продолжительность 30-50 секунд.

    Закрепление.

    Предлагаются нестандартные ситуации.

    1. Близорукий ученик воспринимает буквы, написанные на доске, расплывчатыми, нечёткими. Ему приходится напрягать зрение, чтобы аккомодировать глаз то на доску, то на тетрадь, что вредно как для зрительной, так и для нервной системы. Предложите конструкцию таких очков для школьников, чтобы избежать напряжения при чтении текста с доски.

    2. Когда у человека мутнеет хрусталик глаза (например, при катаракте), его, как правило, удаляют и заменяют пластмассовой линзой. Такая замена лишает глаз способности к аккомодации и пациенту приходится пользоваться очками. Совсем недавно в Германии начали выпускать искусственный хрусталик, который может самофокусироваться. Предположите, какую конструктивную особенность придумали для аккомодации глаза?

    3. Герберт Уэллс написал роман "Человек-невидимка". Агрессивная невидимая личность хотела подчинить себе весь мир. Подумайте, в чём несостоятельность этой идеи? Когда предмет в среде невидим? Как может видеть глаз человека-невидимки?

    Итоги урока. Постановка домашнего задания.

    • § 57, 58 (биология),
    • § 37,38 (физика), предложите нестандартные задачи по изученной теме (по желанию).