Что за болезнь: рак. Молекулярная диагностика


В результате прогресса новых научных направлений молекулярной биологии, молекулярной генетики и генной инженерии сделан огромный шаг вперед, что позволяет сейчас задавать природе вопросы, которые ранее ставить было невозможно. Речь идет о понимании самых фундаментальных основ таких явлений, как клеточное деление и дифференцировка, а также причин механизма их нарушений.

В конкретном приложении к одной из самых злободневных и волнующих проблем, стоящих перед человечеством, — проблеме злокачественных опухолей — можно говорить о появлении новой науки — молекулярной онкологии. Ее поразительные успехи в сфере изучения молекулярных механизмов онкогенеза и молекулярных основ ракового фенотипа связаны с применением уникальных, присущих ей методов исследования.

Выходящая в свет и предлагаемая читателям книга «Молекулярная онкология» посвящена подведению первых итогов и изложению достижений указанной молодой науки. В ней четко прослеживается преемственность основных принципов и постулатов классической теоретической онкологии прежде всего в главных вопросах: полиэтиологичности возникновения опухолей и многостадийности этого процесса.

Однако решения даются уже на другом уровне организации живой материи — молекулярном. Данная книга — первая и единственная пока в нашей стране. Она написана авторами, непосредственно и активно работающими в данной области, что предопределило глубину осмысления приводимых конкретных фактов и конструктивность обобщений. Через всю книгу проходит мысль об универсальности молекулярных механизмов онкогенеза.

Эта идея естественно вытекает из проводимого авторами анализа новейших исследований основных видов канцерогенеза: химического, физического, биологического, основа которых, как убедительно показывают авторы, едина и может быть выражена в принципиально общих молекулярных терминах.

Каждому из этих видов онкогенеза посвящены отдельные главы. 1-я глава обращает читателя к истокам теоретической онкологии, к ее классическим исследованиям начала нынешнего столетия. 2-я и 3-я главы посвящены соответственно молекулярным механизмам химического и вирусного канцерогенеза.

Упомянутые первые три главы логически предшествуют заключительным — 4-й и 5-й главам — подлинной сердцевине книги.

Именно в этих главах в концентрированном виде представлены факты и идеи, символизирующие суть и дух современной теоретической онкологии — онкологии молекулярной. Ее достижения вселяют уверенность в конечной победе человеческого разума над тяжелым недугом.

«Молекулярная онкология»,
И.Ф. Сейц, П.Г. Князев

Критически мыслящему наблюдателю современная теоретическая онкология, возможно, представляется деревом цветущим, но не плодоносящим. Такое впечатление в какой-то мере оправдано и обусловлено явным дисбалансом огромных интеллектуальных усилий и материальных вложений, с одной стороны, и скромных практических выходов — с другой. Все еще остаются неясными как природа злокачественных новообразований, так и первичный побудительный импульс, инициирующий неотвратимую цепь…


С течением времени выявление канцерогенных свойств химических агентов стало лишь делом техники, и наметилось явное смещение акцентов исследований от рутинного их тестирования на канцерогенность к изучению механизма онкогенного действия. В этом деле, наряду со значительными успехами, выявились и немалые трудности. Успехи касались чисто химической стороны проблемы: была установлена необходимость активации исходных канцерогенов, изучены метаболизм, взаимодействие…


Каким образом вторжение осколков химических канцерогенов в ДНК результируется в неконтролируемый рост и трансформацию клеток? Теория химического канцерогенеза для того, чтобы сделать новый и решающий шаг вперед, нуждается в каком-то научном событии, аналогичном по значимости открытию обратной транскриптазы в онковирусологии. В теории химического канцерогенеза подобного события пока не произошло. Тем не менее можно ожидать, что…


Главным успехом онковирусологии наших дней следует считать открытие онкогенов — дискретных материальных генетических элементов в структуре ДНК клеток, ответственных за индукцию злокачественных опухолей у человека и животных. Это направление исследований является наиболее перспективным в современной теоретической онкологии. Онкогены обнаружены в геномной ДНК не только животных, но и человека, а вероятность их участия в индукции опухолей…


Еще И. М. Сеченов в 1860 г. в тезисах докторской диссертации писал, что при настоящем состоянии естественных наук единственно возможный принцип патологии есть молекулярный. Сейчас можно только удивляться этому провидению. Сегодня молекулярная онкология стоит у порога тайны рака. Именно ей принадлежат наиболее выдающиеся успехи в области теоретической онкологии последних лет. К ним можно отнести следующие…


Если молекулярная биология в наиболее лаконичной интерпретации может быть охарактеризована как наука, выражающая и объясняющая сложные общебиологические явления в терминах свойств и взаимодействия молекул, то молекулярная онкология, естественно, призвана раскрывать молекулярные механизмы процесса канцерогенеза и особенностей опухолей. В данной книге сделана попытка подытожить успехи этой молодой науки. Все величие прогресса в познании опухолей в наше…


Использование методов переноса генов и молекулярного клонирования позволило установить некоторые наиболее важные, центральные детерминанты ракового процесса. Эти детерминанты — онкогены и их продукты — онкобелки, действующие как на структуру, так и на функции клеток, влияющие на регуляторные механизмы биохимических реакций. Многие из этих функций онкогенов и онкобелков пока неизвестны, однако при современном уровне знаний их…


Онкобелок p21cras в процессе трансформации клеток, по-видимому, существенно влияет на биоэнергетику клетки и передачу регуляторного сигнала от клеточной мембраны в ядро . Несомненно также и то, что онкобелок p2jcras в своем многофункциональном действии в процессе малиг-низации клетки-мишени кооперирует с функциями других активированных протоонкогенов . Для некоторых стероидных гормонов, например глюкокортикоидов, установлен механизм передачи их информации от специфического…

«Мы редко можем отказаться от своей любимой
клинической гипотезы и продолжаем лечить больных так,
как лечили их на протяжении многих десятков лет…
Между тем, настало время для смены существующих парадигм».

Richard Schilsky, президент ASCO

«Для самых тяжелых болезней нужны самые сильные лекарства, точно применяемые...»
Гиппократ

Прогноз при лечении рака зависит от клинической стадии заболевания (TNM), биологии опухоли и проведенного лечения. Современные достижения клинической онкологии неоспоримы. И все же, несмотря на очевидные успехи в создании новых противоопухолевых препаратов, каждый день тысячи онкологических больных принимают лекарства, которые им не помогают. Для некоторых пациентов эмпирическое лечение будет полезным и безопасным. Однако для множества других больных терапия может оказаться и бесполезной, и токсичной.

К концу 90-х гг. ХХ ст. цитотоксическая химиотерапия достигла предела своих возможностей. Развитие молекулярной биологии и ориентация на персонифицированную медицину привели к принципиально новому подходу в лечении больных c использованием молекулярных таргетных препаратов нового поколения. Блокада пролиферации раковой клетки была достигнута с помощью селективной ингибиции ее основных сигнальных путей – лигандов, мембранных рецепторов, внутриклеточных белков.
Однако, несмотря на очевидные успехи нового подхода, в конце первого десятилетия постгеномной эры возникла настоятельная необходимость пересмотра и этой, новой, лечебной парадигмы, что было обусловлено большим количеством клинических неудач в связи с развитием приобретенной резистентности опухоли.

Мишени таргетной терапии и механизмы резистентности
Наиболее целостный взгляд на развитие и эволюцию рака был представлен в двух хрестоматийных статьях D. Hanaan and R. Weinberg (Cell, 2000, 2011). Исходя из характеристик, мишенями терапии должны быть не только раковые клетки с их нестабильным геномом, особым типом метаболизма, активным неоангиогенезом и приобретенной способностью уклоняться от сигналов роста, циркулировать в кровотоке и метастазировать. Мишенями терапии должны быть также опухолевое микроокружение, стволовые клетки рака, а также все компоненты метастатического каскада.
Очевидно, что реализовать такую программу в рамках лечебного протокола для конкретного пациента просто невозможно, даже при использовании комбинации нескольких таргетных препаратов. Одно лекарство, даже с уникальным молекулярным механизмом действия, не может быть эффективным для лечения генетически гетерогенной прогрессирующей опухоли, в которой появляются и закрепляются многочисленные механизмы резистентности.
Частные механизмы резистентности к различным таргетным препаратам хорошо изучены. К ним относятся активация альтернативных EGFR-путей, способствующих выживанию клетки в ответ на ее лекарственное повреждение, формирование онкогенного bypass и аутокринной петли, потеря внеклеточного домена мембранного рецептора (формирование усеченного рецептора – truncated), перепрограммирование кинома, аутофагия, эпителиально-мезенхимальный переход, эпигенетические механизмы и др.
Во время прогрессии и под влиянием терапии в опухоли появляются дополнительные онкогенные мутации, меняется ее молекулярный ландшафт и развивается нестабильность генома, что сегодня принято называть геномным хаосом (W. George, Jr. Sledge, 2011).
Не только раковые клетки характеризуются индивидуальностью и изменчивостью. Кроме эпителиальных клеток изменения происходят также в опухоль-ассоциированной строме. Стромальные клетки также подвержены молекулярной эволюции, хотя и являются генетически более стабильным компонентом солидной опухоли.
Микроокружение, состоящее из доброкачественных клеток стромы, клеток иммунной системы и клеток воспаления, также влияет на эволюцию злокачественного клона и формирование вторичной резистентности к терапии.

Гетерогенность как причина неэффективности противоопухолевой терапии

Основной причиной низкой эффективности эмпирической терапии является опухолевая гетерогенность.
В течение многих десятилетий гистологи классифицировали рак по морфологическим признакам, описывая различные типы раковых клеток и их взаимоотношение со стромой опухоли.
Методы молекулярного анализа, особенно быстро развивающиеся в постгеномной эре, показали истинные масштабы опухолевой неоднородности.

Индивидуальная (интертуморальная) гетерогенность
Микрочиповая технология анализа уровня экспрессии тысяч генов позволила вначале (2000 г.) классифицировать рак грудной железы (РГЖ) на люминальный А, люминальный В, HER/2 и базальный. Несколько позже уточнение молекулярной таксономии с акцентом на базальные раки выявило дополнительные подтипы. Среди них выделяют такие, как Сlaudin-low (характерна экспрессия генов, аналогичная стволовым клеткам молочной железы), подтипы мезенхимальных опухолей (гены, регулирующие эпителиально-мезенхимальный переход), подтипы апокринных опухолей с экспрессией андрогенных рецепторов и активацией соответствующего сигнального пути, подтипы с активностью генов, регулирующих иммунный ответ.
Дальнейшие молекулярные исследования РГЖ были связаны с реализацией проекта METABRIC (Molecular Taxonomy of Breast Cancer International Consortium). Было установлено, что на геномный ландшафт опухоли могут влиять такие молекулярные события, как точечные мутации, инсерции, делеции, амплификации, дупликации, транслокации и инверсии. При этом оказалось, что соматическим мутациям могут подвергаться как гены, не связанные с канцерогенезом, так и гены, мутации которых при развитии рака встречаются часто (GATA3, TP53 и PIK3CA). Кроме повреждения генома при РГЖ были обнаружены различные эпигеномные нарушения (метилирование ДНК), повреждения на уровне транскрипции и микроРНК. В результате данных исследований только при люминальном А подтипе были классифицированы еще 10 различных молекулярных интегративных кластеров, влияющих на исход заболевания. Установлено также, что все четыре «основные» подклассы и новые «дополнительные» молекулярные подтипы РГЖ имеют разные профили чувствительности к противоопухолевым препаратам.
Молекулярно-генетические классификации, влияющие на особенности лечения, создаются для рака желудка, колоректальной карциномы, рака яичника и других локализаций.

Внутриопухолевая (интратуморальная) гетерогенность
Значительно большую фундаментальную проблему онкологии представляет внутриопухолевая гетерогенность. Сосуществование в опухоли нескольких субклонов с различными наборами молекулярных аберраций и различной чувствительностью к лекарственным препаратам делает неэффективными стратегии подавления одной фракции клеток по отношению ко всей опухоли. Дополнительным неблагоприятным фактором является изменение биологии опухоли во время ее развития.
Внутриопухолевую гетерогенность принято разделять на пространственную (географическую) и временную (эволюционную).
Пространственная неоднородность предполагает присутствие молекулярно-генетических различий в отдельных регионах опухоли, генетические различия между первичной опухолью и ее метастазами, а также различия между метастазами разных анатомических локализаций.
В зависимости от уровня генетической гетерогенности наблюдаются моногеномные (одинаковые генетические профили в различных географических районах) и полигеномные опухоли (различные субклональные популяции клеток в различных отделах).
Принципиальные изменения в геноме во время развития опухоли происходят в трех временных точках: в момент перехода cancer in situ в инвазивный рак, во время медленной эволюции первичного инвазивного рака и во время метастатической прогрессии.
Есть много причин полагать, что рак ведет себя как открытая нестабильная экосистема, развитие которой зависит от давления окружающих факторов, таких как действие иммунной системы и гипоксии. На формирование эволюционной (временной) гетерогенности первичной опухоли активно влияет также проводимое противоопухолевое лечение.
В солидной опухоли всегда существует редкий субклон клеток критической важности, определяющий окончательный исход заболевания. Смерть пациента чаще всего наблюдается в результате воздействия на организм того клона клеток, который в момент первичного диагноза не был доминирующим и представлял не более 1% от всех клеток опухоли. Наличие таких клеток было доказано на примере злокачественной миеломы, рака предстательной железы и при опухолях других локализаций. Анализ серийных биопсий, выполненных многократно на протяжении всей истории заболевания (от момента первичной диагностики до смерти больного) показал, что выживший в результате терапии клон клеток не был доминирующим вначале и получил свое развитие после лекарственной элиминации других, «основных», быстро пролиферирующих клонов.
Выявление и ликвидация этого смертельного клона клеток, приводящего к гибели пациентов, является необходимой терапевтической стратегией.

Неоднородность опухоли на уровне клетки
Большинство современных исследований молекулярных аберраций было проведено на клетках, представляющих основную популяцию опухоли. При этом выявлялись структурные изменения ДНК, происходящие на ранних стадиях развития опухоли и приводящие к вспышкам геномной эволюции (так называемые «большие мутационные часы»). Недостатком этих методик было то, что в процессе исследований не учитывалось наличие редких субклонов с уникальными генетическими мутациями, скрытых в общей массе основных клеток. Именно в этих клетках происходит постепенное накопление точечных мутаций, способствующих обширной субклональной генетической дивергенции («малые мутационные часы»).
В настоящее время этот недостаток (исследование опухоли на уровне одного, ведущего, злокачественного клона) пытаются преодолеть. Современные методы молекулярного профилирования позволяют это сделать. Установлено, что в опухоли имеются т.н. «мутации-драйверы» и «мутации-пассажиры». Мутации-драйверы придают селективное преимущество роста клеткам, несущим такие мутации. Мутации-пассажиры такого эффекта не имеют.
Обычно только мутации-водители были объектом исследований в качестве терапевтических мишеней. Однако в последнее время внимание исследователей привлекают и мутации-пассажиры, поскольку от них зависят такие эффекты, как индукция иммунного ответа и протеотоксический стресс. Мутации-пассажиры также могут быть объектом противоопухолевых стратегий.
Накопление многочисленных мутаций, являющееся характерным для опухолей с геномной и хромосомной нестабильностью, может завершиться мутационным кризисом. При превышении оптимального порога геномной нестабильности происходит нарушение жизнеспособности и снижение численности элементов всей системы.

Методы анализа опухолевой ткани
Методы молекулярного анализа опухолевой ткани чрезвычайно разнообразны и находятся далеко за пределами классической гистологии. Сегодня эти методы включают: метод микроматриц, саузерн-блоттинг, нозерн-блоттинг, вестерн-блоттинг, гибридизацию in situ, полимеразную цепную реакцию (ПЦР), обратнотранскриптазную ПЦР в режиме реального времени, иммуногистохимию, иммунофлуоресцентную микроскопию, мальди-масс-спектрометрию.
Анализ опухолевой клетки можно провести на уровне генома (флуоресцентная гибридизация in situ, спектральное кариотипирование, сравнительная геномная гибридизация), транскрипции (технология микроматриц: профилирование экспрессии генов и РНК), протеома (двумерный гелевый электрофорез, масс-спектрометрия, поверхностно-усиленная лазерная десорбционная ионизация в режиме TOF: технология матриц + масс-спектрометрия).
Молекулярная томография тканей опухоли позволяет осуществлять визуализацию пространственного распределения белков, пептидов, лекарственных соединений, метаболитов, а также молекулярных предиктивных биомаркеров.
Молекулярному анализу должны подвергаться ткани первичной солидной опухоли, ткани реализовавшихся гематогенных метастазов (быстро растущих и клинически значимых), а также циркулирующие опухолевые клетки и циркулирующая опухолевая ДНК (показатель наличия «дремлющих» метастазов). Биопсия опухоли и метастазов должна выполняться из различных географических участков одной и той же солидной опухоли. Считается, что более информативной (и безопасной) является liquid-биопсия.

От эмпирической к персонифицированной терапии
Опухоль, являясь открытой нестабильной биологической системой, не только демонстрирует индивидуальную гетерогенность, но и изменяет свои молекулярные характеристики на протяжении всей эволюции, и особенно – во время метастатической прогрессии. Изменениям подвергаются как основные, так и недоминирующие клоны клеток солидной опухоли, а также клетки опухолевого микроокружения.
Для подавления пролиферации всех клеток опухоли используется стратегия комбинированной терапии. Впервые концепцию комбинированного (одновременного или последовательного) лечения более 30 лет назад предложили Goldie и Coldman. Концепция объединяла такие понятия, как рост опухоли, увеличение в ней частоты мутаций, появление устойчивых клонов клеток и развитие резистентности.
Сегодня стратегия современной терапии рака включает использование комбинаций цитостатиков, цитостатиков и таргетных препаратов и даже комбинации двух таргетных препаратов (ингибиторов тирозинкиназ и моноклональных антител). В основе этой стратегии лежит подавление опухоли с помощью лекарственных препаратов, воздействующих на пул основных, быстро пролиферирующих клеток. Жизненный цикл этих клеток определяется активностью мутаций-водителей. В целом же устойчивость системы объясняется множеством факторов, в том числе активностью мутаций-пассажиров, роль которых в терапевтических протоколах не учитывается.
Стратегия персонифицированной терапии, являющаяся сегодня основной парадигмой противоопухолевого лечения, учитывает постоянно изменяющийся ландшафт всего «опухолевого поля»: гетерогенность клонов первичной солидной опухоли, гетерогенность циркулирующих опухолевых клеток, а также фенотипическую и метаболическую гетерогенность «спящих» раковых клеток в многочисленных метастатических нишах костного мозга и висцеральных органов.

Caris Molecular Intelligence Services
Идея выявления индивидуальных предиктивных онкомаркеров, которые могли бы предсказать результаты противоопухолевой терапии, возникла в 2008 г., когда профессор Daniel D. Von Hoff создал уникальную лабораторию Caris Molecular Intelligence Services (CША). Сегодня для молекулярного профилирования тканей опухоли в лаборатории используется комбинация методов – IHC, CISH, FISH, Next-Generation Sequencing, Sanger Sequencing, Pyro Sequencing, PCR (cobas ®), Fragment Analysis.
За несколько лет молекулярная томография в этой лаборатории выполнена 65 тыс. пациентов при более чем 150 гистопатологических подтипах злокачественных опухолей. Комплексный подход, основанный на использовании не одного метода (например, только иммуногистохимического), а комбинации молекулярных методов, позволяет выявлять индивидуальные предиктивные онкомаркеры конкретного пациента и на основании этого анализа принимать решения о проведении персонифицированной терапии.
Экспрессия одних белков (или амплификация генов) требует назначения соответствующих препаратов, экспрессия других белков – исключает назначение того или иного препарата. Так, экспрессия TOPO1 является предпочтительной для назначения иринотекана, экспрессия RRM1 – для назначения гемцитабина, экспрессия MGMT является основанием для назначения темозоламида или дакарбазина, экспрессия TOPO2A с одновременной амплификацией HER2 позволяет проводить терапию доксорубицином, липосомальным доксорубицином и эпирубицином.
Для назначения трастузумаба, помимо выявления экспрессии/амплификации HER/2, с целью прогнозирования резистентности к препарату, необходимо исследовать PTEN (IHC) и PIK3CA (NGS).
С другой стороны, экспрессия TS требует избегать назначения флуороурацила, капецитабина, пеметрекседа; экспрессия SPARC (IHC), TLE3 (IHC), Pgp (IHC) требует избегать назначения доцетаксела, паклитаксела, наб-паклитаксела.
При такой комбинации онкомаркеров, как ER (IHC), HER2 (IHC), HER2 (CISH), PIK3CA (NGS), не следует назначать эверолимус и темсиролимус.
Комбинация современных методов биологической визуализации позволяет выявлять молекулярные предиктивные онкомаркеры для каждого известного цитосатика или таргетного препарата, применяющегося сегодня в клинической онкологии. Подобный подход, основанный сначала на проведении молекулярного профилирования тканей опухоли, выявлении в ней индивидуальных предиктивных онкомаркеров и только потом – выработке плана лечебной стратегии, получил доказательства в ряде клинических исследований. Одно из них – Bisgrove Study, в котором принимали участие TGen, Scottsdale Healthcare and Caris Dx.
Дизайн этого исследования был революционно новым. Учитывая тот факт, что каждая опухоль является индивидуальной, авторы дизайна исследования отказались от рандомизации больных на многочисленные группы, исходя из анатомической локализации опухоли или только одного иммуногистохимического признака. В данном исследовании не было групп сравнения – каждый пациент выступал в качестве собственного контроля.
Всего в исследовании принимали участие 66 больных из 9 онкологических центров США: 27% – РГЖ, 17% – КРР, 8% – РЯ, 48% – другие локализации. Все пациенты до включения в исследование получали терапию по поводу метастатического рака по общепринятым стандартам – всего от 2 до 6 линий. После последней прогрессии продолжали терапию, основанную на молекулярном профилировании.
Результаты исследования показали, что время до прогрессирования у больных РГЖ увеличилось на 44%, при КРР – на 36%, при РЯ – на 20%, при прочих локализациях – на 16%. Следует учесть, что у всех пациентов на момент включения в исследование развилась вторичная резистентность к лекарственной терапии, и общепринятых рекомендаций по их дальнейшему лечению не было. Таким образом, сделан вывод, что для агрессивных, редких опухолей, а также прогрессирующих опухолей с развившейся резистентностью, альтернативы молекулярному профилированию и персонификации лечения не существует.

Смена дизайна клинических исследований
Отдельно следует отметить, что парадигма персонифицированной терапии в онкологии активно меняет общепринятый дизайн клинических исследований. Все громче звучат голоса о том, что результаты клинических трайлов, основанные на рандомизации и стратификации пациентов на многочисленные популяции и когорты, следует пересмотреть с учетом индивидуальной интра- и интертуморальной гетерогенности. Как результат, дизайн современных клинических исследований становится все более персонифицированным.
Примером таких новейших современных дизайнов являются Master protocols, Basket trials, Adaptive trial design и, наконец, N-of-1 studies. Основная идея новых дизайнов следующая. Спонсорами исследования выступают одновременно несколько фармацевтических компаний, имеющих для терапии рака данной локализации препараты с различными мишенями и различным молекулярным механизмом действия. В исследование включаются больные после проведения возможно полного молекулярного профилирования опухоли. Участвуя в одном исследовании, пациент, в зависимости от наличия у него соответствующих белков-мишеней, может получать поочередно наиболее эффективные препараты. Во время терапии может проводиться индивидуальная адаптация препарата по дозе или использоваться cocktailmix из комбинации различных препаратов, необходимость в которых появилась во время лечения. Опухолевая прогрессия и токсичность не являются основанием для прекращения лечения, а только для смены вида терапии. На клиническое решение влияют результаты молекулярного профилирования опухоли, которое проводится сразу же после опухолевой прогрессии или очередного курса терапии. Таким образом, в процессе исследования пациент может получать совсем не тот препарат, который ему был первоначально назначен.
Наконец, уже существуют трайлы только для одного пациента – N-of-1 studies. Этот дизайн наиболее подходит парадигме персонифицированной терапии. Подобный подход позволит в ближайшем будущем создавать индивидуальные препараты для терапии рака.
Однако, уже и сегодня протоколы персонифицированной терапии, основанные на молекулярном профилировании опухоли, широко используются в клинической практике ведущих онкологических центров США, Европы, Японии, позволяя получать клинические результаты нового уровня. В числе подобных мировых центров – Memorial Sloan-Kettering Cancer Center, Center for Personalized Genetic Medicine at Harvard, Institute for Personalized Medicine at MD Anderson, Center for Personalized Health Care at the Ohio State University.
С января 2014 г. молекулярное профилирование тканей опухоли на основе платформы Caris Molecular Intelligence Services доступно в Украине. Это стало возможным благодаря компании Амакса Фарма (AmaxaPharma), которая является официальным партнером компании Caris Life Sciences в области проведения молекулярного профилирования опухолевой ткани в странах Восточной Европы. С января 2014 года благодаря такому сотрудничеству молекулярное профилирование Molecular Intelligence в Украине уже прошли десятки пациентов с редкими опухолями, при которых отсутствуют стандарты терапии, а также онкологические больные с первичной и приобретенной химиорезистентностью. Получены первые результаты, которые существенно отличаются от результатов эмпирического подхода.
Возможность осуществления молекулярного профилирования в нашей стране позволила вплотную приблизиться к решению проблемы персонифицированного лечения рака.

Заключение
Опухолевая неоднородность имеет глубокие клинические последствия для онкологических пациентов. Для принятия правильных клинических решений необходимо иметь наиболее целостную картину биологии раковой клетки и ее микроокружения. Молекулярное профилирование тканей первичной опухоли, гематогенных метастазов, циркулирующих опухолевых клеток и клеток метастатической ниши позволяет сделать большой шаг к реализации программы персонифицированного лечения рака.

СТАТТІ ЗА ТЕМОЮ Онкологія та гематологія

06.01.2019 Онкологія та гематологія Променева діагностика раку яєчника: можливості сучасних діагностичних зображень Применение микафунгина в гематологии

Инвазивные грибковые инфекции (ИГИ) повышают заболеваемость, смертность, длительность госпитализации и связанные с ней затраты у онкогематологических больных с тяжелым иммунодефицитом. У этих пациентов имеется большое количество взаимосвязанных факторов риска развития ИГИ, таких как нарушенные анатомические барьеры, супрессия иммунного ответа, индуцированная химиотерапией нейтропения, почечная или печеночная недостаточность, гипергликемия и реакция трансплантата против хозяина, а также лечение антибиотиками широкого спектра действия или кортикостероидами, установка центральных венозных катетеров....

06.01.2019 Онкологія та гематологія Резолюція засідання Ради експертів із проблеми тромбоцитопенії у практиці онкологів та гематологів

Тромбоцитопенії – ​це група захворювань і синдромів, об’єднаних спільною ознакою: наявністю геморагічного синдрому, що розвивається в результаті зниження числа кров’яних пластинок у периферичній крові <150×109/л....

Молекулярная патология рака легкого изучает совокупность морфологических и молекулярно-генетических особенностей данной опухоли. При этом наиболее важными аспектами проблемы являются определение биомолекулярных и гистогенетических маркеров рака, а также патология апоптоза при раке легкого.

Биомолекулярные маркеры рака легкого разнообразны, совпадают, по всей видимости, с маркерами нерадиационного рака легкого и представлены различными генами, белками, гормонами и другими молекулами.

Клеточные онкогены при раке легкого. В патогенезе рака легкого наибольшее значение имеют клеточные онкогены четырех семейств: myc, ras, bcl, erb-B .

Семейство myc клеточных онкогенов - c-myc, L-myc, N-myc - представлено немедленно реагирующими генами и кодирует клеточные регуляторные белки, индуцирующие пролиферацию и подавляющие дифференцировку. Установлено, что в отсутствие факторов роста повышение экспрессии c-myc приводит не к делению клеток, а к апоптозу, который может ингибироваться bcl-2. Амплификация с-myc обнаруживается в 10-25% случаев рака легкого, в то время как L-myc и N-myc - только в нейроэндокринных опухолях легких (10-30%). Определение повышенной экспрессии онкопротенинов myc регистрируется значительно чаще.

Экспрессия L-myc обнаруживается только в группе нейроэндокринных опухолей легких, а экспрессия с-myc как в группе мелкоклеточного, так и немелкоклеточного рака легкого. В группе мелкоклеточного рака легкого установлена достоверная корреляция экспрессии L-myc и c-myc с наличием метастазов и размерами опухоли.

Семейство клеточных онкогенов ras нередко подвергается изменениям при опухолевом росте. Гены кодируют синтез белков р21, обладающих ГТФ-азной активностью и связывающихся с ГТФ и тем самым воздействующих на передачу ростового сигнала клетке. Описаны мутации, активирующие гены ras и локализующиеся в кодонах 12, 13 и 61. Наиболее часто в раке легкого обнаруживаются мутации K-ras, присущие только немелкоклеточному раку легкого в отличие от мелкоклеточного. Частота мутаций K-ras в аденокарциномах легкого составляет до 30%, а в плоскоклеточном раке легкого только 3%. Показана связь K-ras мутаций с табакокурением.

K-ras мутации обнаружены при предраке легкого - атипической гиперплазии альвеолярного эпителия. В этих же очагах описана экспрессиия р53. Найдены корреляции между более высокой экспрессией данного онкопротеина с железистой дифференцировкой рака легкого. Высокая экспрессия белковых продуктов ras регистрировалась также в очагах аденоматоза легкого и в овальных и щелевидных эпителиальных структурах в рубцах.

Семейство bcl-2 состоит из bcl-2, bax, bak, bclXL, bclXS, белковые продукты которых способны образовывать гомо- и гетеродимеры, оказывающие порой диаметрально противоположное действие на пролиферацию и апоптоз опухолевых клеток. Наиболее изученный из данного семейства bcl-2 локализуется на внутренней мембране митохондрий, а также в ядре, стимулирует пролиферацию клеток и ингибирует апоптоз, вероятно, за счет антиоксидантной активности. Напротив, протеины bax, транскрипцию и синтез которых регулируется р53, блокируют пролиферацию и стимулируют апоптоз опухолевых клеток. BclXL ингибирует апоптоз и стимулирует пролиферацию, а bclXS, напротив, индуцирует апоптоз. Таким образом, баланс между белковыми продуктами bcl-2 - bax, bclXL-bclXS и определяют сдвиг равновесия в сторону пролиферации или апоптоза в опухоли.

Гены-супрессоры при раке легкого. Роль генов-супрессоров при развитии опухолей сводится к блокированию апоптоза и снятию их супрессивного влияния на клеточные онкогены, что в итоге заканчивается активацией пролиферации. Для реализации эффекта от повреждений генов-супрессоров изменения должны затрагивать оба аллеля гена, так как мутированный ген-супрессор всегда относится к сохранному как рецессивный к доминантному. Например, мутация или делеция одной из аллелей гена-супрессора должна сопровождаться потерей или изменениями в другой аллели.

Гены-супрессоры в раке легкого изучены относительно хорошо. Известны наиболее часто встречающиеся делеции хромосом, затрагивающиеся следующие участки: 3p21-24, 17p13, 13q14, 9p21-22 и 5q21. Делеция 3p21-24 встречается наиболее часто: при мелкоклеточном раке- в 100% и при немелкоклеточном - в 85% случаев. Но в этой зоне не локализуется ни одного гена-супрессора. Другие же сайты соответствуют известным генам-супрессорам. Так, например, р53 локализуется в 17р13, ген ретинобластомы - 13q14, р16 INK4B(MTS1) и р15 INK4B(MTS2) - 9р21-22. Функции большинства из перечисленных генов хорошо известны и связаны с контролем фазы G1 митотического цикла и/или апоптоза. Их инактивация вызывает развитие апоптоза. Выявление повреждения генома в области локализации генов-супрессоров на стадии предраковых изменений свидетельствует об участии этих генов на ранних стадиях опухолевого роста. В настоящее время описаны ряд новых генов-супрессоров, имеющих, видимо, значение для развития рака легкого и локализованных в хромосомах 1 и 16.

Ген р53 подвергается наиболее частым изменениям при опухолевом росте. "Дикий" тип р53 (природный) является транскрипционным фактором с множественными функциями, включающими регулировку перехода клеток из G1 в S-фазу, репарацию ДНК, апоптоз вслед за повреждением генома. Делеция одного из алллелей (17р13) в сочетании с точковой мутацией в другом аллеле - генетические перестройки, наблюдаемые в большинстве злокачественных опухолей. Мутированный р53 действует фактически как клеточный онкоген, стимулирует пролиферацию опухолевых клеток и вызывает образование антител, которые выявляются в крови больных. Последнее послужило основанием для разработки иммунодиагностики и иммунотерапии рака легкого.

Мутация вызывает конформационные изменения в протеине р53, и тот накапливается в ядрах клеток, что позволяет определять его иммуногистохимическими методами. Напротив, считается, что "дикий" тип р53 обладает очень коротким полупериодом жизни (20 мин), и поэтому его невозможно определить иммуногистохимически. Инактивация р53 при раке легкого имеется примерно в 70% случаев. Исследования по корреляции экспрессии р53 с выживаемостью противоречивы. В целом, если такое действие и есть, то оно очень несущественно. Не понятна и связь р53 со злокачественной трансформацией. В то же время экспериментальные данные показывают, что при активации "дикого" типа р53 происходит замедление роста и развивается апоптоз, что может привести к реверсии злокачественного фенотипа.

Имеются доказательства о значении мутации р53 на ранних стадиях канцерогенеза легкого. Мутантные формы р53 никогда не выявляются при резервной базальноклеточной гиперплазии или плоскоклеточной метаплазии без признаков дисплазии. При дисплазии р53 мутации выявляются в 12-53% случаев, а при раке на месте - 60-90% случаев в исследованиях ткани, окружающей рак легкого. Обнаружение р53 более, чем в 20% клеток в очагах дисплазии, является маркером необратимых предраковых изменений. Однако мутация р53 - это не обязательный феномен, характерный для рака легкого, и поэтому отсутствие р53 не является благоприятным прогностическим фактором. Кроме того, ни накопление р53, ни его мутации не исчерпывают молекулярные механизмы, через которые р53 может инактивироваться в опухолях. Нарушение работы р53 происходит при его взаимодействии с другими белками-регуляторами митотического цикла - р21, Mdm2, bax.

Ген Rb локализуется в сайте 13q14, который подвергается делеции в 80% случаев мелкоклеточного рака легкого (так же часто, как и при ретинобластоме), кодирует ядерный фосфопротеин массой 110 Кда и контролирует выход клетки из фазы G1. Гипофосфорилирование Rb приводит к блокаде клетки на стадии G1 и апоптозу. Инактивация Rb в опухолях достигается потерей одного из аллелей и мутацией второго аллеля гена.

Таким образом, инактивация генов-супрессоров р53 и Rb имеет большее значение для развития и прогрессии мелкоклеточного рака легкого.

Факторы роста, рецепторы к факторам роста и связывающие протеины при раке легкого. В прогрессии рака легкого факторы роста играют важную роль, обеспечивая с помощью аутокринной и паракринной стимуляции рост опухоли.

Адгезивные молекулы и внеклеточный матрикс при раке легкого. Адгезивные молекулы, интегриновые рецепторы и внеклеточный матрикс рака легкого оказывают модулирующее действие на опухолевые клетки и обеспечивают рост, инвазию и метастазирование опухоли, о чем говорилось в предыдущих разделах лекции.

Первая фаза инвазии опухоли характеризуется ослаблением контактов между клетками, о чем свидетельствует уменьшение количества межклеточных контактов, снижение концентрации некоторых адгезивных молекул из семейства CD44 и др. и, наоборот, усиление экспрессии других, обеспечивающих мобильность опухолевых клеток и их контакт с внеклеточным матриксом. На клеточной поверхности снижается концентрация ионов кальция, что приводит к повышению отрицательного заряда опухолевых клеток. Усиливается экспрессия интегриновых рецепторов, обеспечивающих прикрепление клетки к компонентам внеклеточного матрикса - ламинину, фибронектину, коллагенам. Во второй фазе опухолевая клетка секретирует протеолитические ферменты и их активаторы, которые обеспечивают деградацию внеклеточного матрикса, освобождая тем самым ей путь для инвазии. В то же время продукты деградации фибронектина и ламинина являются хемоаттрактантами для опухолевых клеток, которые мигрируют в зону деградации в ходе третьей фазы инвазии, а затем процесс повторяется снова.

Гистогенетические маркеры различных типов рака легкого. Рак легкого представлен опухолями различного гистогенеза. В последние годы все гистологические типы рака легкого делятся на мелкоклеточный и немелкоклеточный, которые отличаются не только морфологическими проявлениями, но также и клинически, ответом на химиотерапию и прогнозом жизни больных.

Мелкоклеточный рак легкого характеризуется и особыми биомолекулярными маркерами из группы клеточных онкогенов, генов-супрессоров и факторов роста. Кроме того, мелкоклеточный рак отличается и признаками нейроэндокринной дифференцировки. Более чем в 90% случаев клетки опухоли экспрессируют и хромогранин, и панцитокератины. Хромогранин выявляется в виде гранул в цитоплазме опухолевых клеток. Количество хромогранин-положительных клеток и уровень экспрессии колеблется в зависимости от степени зрелости опухоли.

Немелкоклеточный рак легкого - это гетерогенная группа опухолей, относящихся к разным гистогенетическим группам: плоскоклеточный рак (маркерами являются цитокератины и кератогиалин), аденокарцинома (цитокератины слизи, сурфактант), а также крупноклеточный рак, который может быть представлен как низкодифференцированной аденокарциномой, так и низкодифференцированным плоскоклеточным раком.

Оснащение лекции

Макропрепараты: бронхоэктазы и пневмосклероз, хроническая обструктивная эмфизема легких, легочное сердце, сотовое легкое при идиопатическом фиброзирующем альвеолите, силикоз легкого, центральный рак легкого, метастазы рака легкого в надпочечники.

Микропрепараты: хронический обструктивный бронхит, бронхоэктазы и пневмосклероз, хроническая обструктивная эмфизема легких, легочное сердце, перестройка сосудов легкого при вторичной легочной гипертензии, идиопатический фиброзирующий альвеолит, саркоидоз, силикоз легкого, периферический рак легкого, плоскоклеточный рак легкого, аденокарцинома легкого, мелкоклеточный рак легкого.

Электронограммы: хроническая обструктивная эмфизема легких (облитерация альвеолярных капилляров), аденокарцинома легкого, мелкоклеточный рак легкого.

Источник: Материалы третьей ежегодной Российской онкологической конференции
29 ноября - 1 декабря 1999 года, Санкт-Петербург

ПЕРСПЕКТИВЫ МОЛЕКУЛЯРНОЙ ДИАГНОСТИКИ В ОНКОЛОГИИ. К.П. Хансон
НИИ онкологии им. проф. Н.Н. Петрова

Достижения генетики и молекулярной биологии последних десятилетий оказали огромное влияние на понимание природы инициализации и прогрессии злокачественных образовании. Окончательно установлено, что рак представляет собой гетерогенную группу заболеваний, каждое из которых вызывается комплексом генетических нарушений, определяющих свойство неконтролируемого роста и способность к метастазированию. Эти современные знания открыли принципиально новые возможности в диагностике и лечении злокачественных новообразований.

Влияние конкретных генетических нарушений, лежащих в основе опухолевого роста, позволило обнаружить специфические молекулярные маркеры и разработать на их основе тесты ранней диагностики опухолей.

Известно, что неопластические трансформация клеток происходит в результате накопления наследуемых (герминативных) и приобретенных (соматических) мутаций в протоонкогенах или генах-супрессорах . Именно эти генетические нарушения с первую очередь могут быть использованы для обнаружения злокачественных клеток в клиническом материале.

Наиболее подходящим субстратом молекулярной диагностики является ДНК, т.к. она длительно сохраняется в образцах тканей и может быть легко размножена с помощью т.н. полимеразной цепной реакции (ПЦР) . Это позволяет осуществлять диагностику даже при наличии минимального количества исследуемого материала.

Помимо определения мутаций в онкогенах и генах-супрессорах в диагностических целях используют изменения, выявляемые в повторяющихся последовательностях ДНК , т.н. микро сателлитах.

При сравнении парных образцов опухоли и нормальных тканей может быть выявлено выпадение одного из аллелей в опухоли (потеря гетерозиготности (ПГ), что отражает наличие хромосомных делеций, лежащих в основе инактивации генов-супрессоров.

Одним из наиболее современных и высокотехнологичных методов диагностики рака являются генетические (молекулярные) тесты. Эти исследования позволяют не только определять наследственную предрасположенность к тем или иным онкологическим заболеваниям, но и оценивать целесообразность назначения химиотерапии и определить степень агрессивности рака.

В Первом медицинском центре Тель-Авива проводят наиболее эффективные и доказанные генетические исследования из более чем 900 существующих на данный момент. При этом предоставляется услуга дистанционного тестирования, когда пациенту нет необходимости лететь в Израиль. Достаточно отправить по почте образец материала (после пункции либо операции), соблюдая некоторые правила, и ожидать результатов исследования.

Oncotype DX

Это молекулярное исследование применяется при раке молочной железы. В зависимости от целей исследования, типа опухоли и индивидуальных особенностей пациентки различают несколько видов Oncotype DX.

Oncotype DX Breast

Тест используется для определения степени дифференциации опухолевых клеток рака груди (соответственно определяется вероятность рецидива). Применяется после проведения операции по удалению опухоли для выяснения целесообразности назначения химиотерапии. Исследование подходит для эстроген-позитивных опухолей (ER+), инвазивного рака груди без метастазирования в регионарные лимфатические узлы.

Стандартными признаками для выбора тактики лечения после операции являются:

До появления генетических тестов, эти три признака были единственным источником информации, на основании которого определялась тактика о дальнейшем назначении химиотерапии. Однако, далеко не всегда агрессивность раковых клеток и, соответственно, вероятность отдаленного рецидива коррелирует с размерами опухоли и наличием метастазов в лимфатических узлах.

Сегодня в мировой медицине генетический тест Oncotype DX является золотым стандартом и ведущим критерием для выбора тактики терапии при раке груди. Он позволяет как предупредить рецидив заболевания, так и избежать ненужного назначения химиотерапии и всех связанных с ней побочных эффектов.

Fish-тест на рецепторы к Герцептину

Является иммуногистохимическим исследованием, с помощью которого на раковых клетках обнаруживаются специфические рецепторы (HER-2, PR, ER), которые делают ее чувствительной к таргетным лекарственным препаратам. Таковым, в частности, является препарат Герцептин, относящийся к классу моноклональных антител. Он давно успешно применяется при лечении рака молочной железы в Израиле и показал хорошие результаты по продлению жизни и предотвращению рецидивов даже в запущенной стадии и наличии метастазов.

Примерно в 1 из 4 случаев рака молочной железы, опухоль оказывается чувствительной к терапии Герцептином и выяснить это позволяет молекулярный тест на специфические рецепторы. Преимуществом лечения биологическими препаратами по сравнению со стандартными методами (радио и химиотерапия) является отсутствие вредных побочных явлений.

Молекулярный тест гена CYP2D6

Применяется исключительно в случаях гормон-зависимых опухолей молочной железы. В таких раковых клетках присутствуют рецепторы к гормонам — эстрогену и прогестерону, что делает их чувствительными к воздействию гормональной терапии (особенно у женщин в период климакса).

Исследования показали, что применяемые гормон заместительные препараты превращаются в печени в активное действующее вещество благодаря особому ферменту CYP2D6, кодируемому одноименным геном. В среднем до 10% людей имеют мутацию этого гена, из-за которой полноценная трансформация гормонов невозможна.

Генетический тест дает возможность выявить эту мутацию и таким образом определить, будет ли эффективным лечение гормональными препаратами и оценить риск развития рецидива. В Первом медицинском центре Тель-Авива данное исследование проводится с материалом из слюны пациента.

Oncotype DX Colon

Молекулярное исследование, которое применяется при раке толстого кишечника для комплексного взвешивания риска развития рецидива и степени опухолевой прогрессии. Суть теста заключается в анализе сложным программным обеспечением 12 генов ДНК раковой клетки, которые отвечают за степень дифференциации, атипичности и генных аберраций. Результат анализа преобразуется в числовой вид и имеет значение от 0 до 100.

Исследование Oncotype DX Colon назначается пациентам с злокачественными опухолями толстой кишки 2й стадии после операции удаления первичной опухоли и при условии отсутствия метастазов в регионарных лимфатических узлах. Около 15% пациентов с раком толстого кишечника имеют не агрессивную форму опухоли, не склонную к рецидивированию. Тест позволяет оценить этот риск и избежать ненужного назначения химиотерапии.

Длительность генетического тестирования Oncotype DX Colon в Израиле составляет около двух недель, а материал берется непосредственно из первичной опухоли. Оценку делают по 100-бальной шкале, производится комплексное заключение и выбирается дальнейшая тактика лечения.

Тест K-RAS

Специфический генетический тест, который позволяет определить чувствительность рака толстой и к таргетной терапии препаратом Сетуксимаб. Препарат является моноклональным антителом, которое избирательно блокирует рецепторы EGFR опухолевых клеток. Агрессивность рака толстой и прямой кишки напрямую зависит от экспрессии специфических рецепторов эпидермального фактора роста (EGFR).

K-RAS представляет собой белок, который участвует в каскаде реакций, контролирующих клеточное деление эпителия кишечника. Мутации в гене, кодирующем этот белок, приводят к тому, что лечение Сетуксимабом становится неэффективным. Приблизительно 60% людей не имеют этой мутации, поэтому в случае негативного результата теста можно назначать препарат.

Тест K-RAS является крайне важным диагностическим критерием в современной онкологии. Это связано с тем, что лечение Сетуксимабом продлевает жизнь на 2-5 лет или даже приводит к полному выздоровлению больных с запущенными формами новообразований толстой и прямой кишки. Еще 10 лет назад метастатический рак этих отделов ЖКТ считался неизлечимым и больные получали паллиативную терапию, с внедрением биологической терапии пациенты получили шанс на выздоровление.

Тест на EGFR мутацию

Этот генетический тест применяется при немелкоклеточном раке легких. Есть два фермента, которые контролируют размножение клеток — тирозин-киназа и эпидермальный фактор роста EGFR. Поэтому в современных методах таргетной терапии опухолей применяются два препарата, ингибирующих эти ферменты, Эрлотиниб и Гефетиниб.

По статистике от 15 до 20% пациентов имеют мутацию гена EGFR, поэтому им нужно назначать таргетное лечение в виде моноклональных антител вместо химиопрепаратов второй линии. Особо актуально это для 3 и 4 стадий немелкоклеточного рака легких с наличием метастазов. Эрлотиниб и Гефетиниб могут годами ингибировать рост раковых клеток и вызвать длительную ремиссию у пациента. К тому же, моноклональные антитела не имеют негативных побочных действий, как химиотерапия (цитотоксический эффект), так как не воздействует на здоровые клетки.

Комплексное обследование Target Now

Каждая атипичная раковая клетка имеет свой уникальный набор рецепторов и экспрессию генов так же, как у каждого человека уникальны отпечатки пальцев. От их наличия или отсутствия зависит эффективность химиотерапии и лечения биологическими таргетными препаратами.

Современный этап развития лечения моноклональными антителами приобрел такой размах, что для максимально эффективного подбора препарата нужно провести массу молекулярных тестов. Методика Target Now позволяет объединить их все в одно исследование, которое в точности отразит генетический код атипичной клетки.

Впервые официальные результаты испытаний теста были представлены в 2009 году на конференции Американской Ассоциации исследований онкологических заболеваний. По ним у более 98% пациентов с запущенной формой рака (наличие метастазов) удалось получить полную картину молекулярных мишеней и подобрать соответствующую таргетную терапию. Более того, у 30-35% пациентов, вследствие модифицированной терапии по результатам Target Now, наблюдалось значительное улучшение качества жизни и увеличилась длительность жизни.

Тест показан к применению у пациентов, предыдущее лечение у которых оказалось не эффективным, либо с метастазами любой локализации. Для проведения исследования необходим материал из ткани опухоли (биопсия, либо после операции).

Mamma Print

Этот генетический тест предназначен для определения риска развития рецидива после рака молочной железы. По рекомендациям американской Food and drug administration (FDA) тест показан пациенткам с любой формой рака груди моложе 60 лет, без метастатического поражения лимфатических узлов и при условии, что опухоль имеет размер менее 5 сантиметров.

Суть исследования заключается в молекулярном анализе экспрессии 70 генов раковой клетки с последующей оценкой агрессивности опухоли и выведении итогового риска рецидива с помощью математической формулы. Результат позволяет выбрать тактику лечения и определить целесообразность назначения химиотерапии пациентам.

Отличие Mamma Print от аналогичных генетических тестов заключается в том, что исследование проводится на образце “свежей” ткани, поэтому при нем обязательно пребывание пациентки в Израиле для проведения пункции или операции. Результата ждать нужно около недели, но после процедуры можно ехать домой и получить ответ в письменном виде.

Заполнить заявку на лечение