Макрофаги и нейтрофилы. Физиология иммунной системы Респираторный взрыв и внутриклеточный киллинг при неспецифическом иммунитете

Лейкоцитарная формула – процентное соотношение различных видов лейкоцитов (подсчитывают в окрашенных мазках крови). Исследование лейкоцитарной формулы имеет большое значение в диагностике большинства гематологических, инфекционных, воспалительных заболеваний, а также для оценки тяжести состояния и эффективности проводимой терапии. Изменения лейкоцитарной формулы имеют место при целом ряде заболеваний, но порой они являются неспецифическими.

Лейкоцитарная формула имеет возрастные особенности (у детей, особенно в период новорождённости, соотношение клеток резко отличается от взрослых).

Лейкоциты (WBC – White Blood Cells, белые кровяные клетки)

Лейкоциты крови представлены гранулоцитами, в цитоплазме которых при окрашивании выявляется зернистость (нейтрофильные, эозинофильные и базофильные лейкоциты), и агранулоцитами, цитоплазма которых не содержит зернистости (лимфоциты и моноциты). Около 60% общего числа гранулоцитов находится в костном мозге, составляя костномозговой резерв, 40% - в других тканях и лишь менее 1% - в периферической крови.

Различные виды лейкоцитов выполняют разные функции, поэтому определение соотношения разных видов лейкоцитов, содержания молодых форм, выявление патологических клеточных форм несет ценную диагностическую информацию.

Варианты изменения (сдвига) лейкоцитарной формулы:

  • Сдвиг лейкоцитарной формулы влево – увеличение количества незрелых (палочкоядерных) нейтрофилов в периферической крови, появление метамиелоцитов (юных), миелоцитов;
  • Сдвиг лейкоцитарной формулы вправо – уменьшение нормального количества палочкоядерных нейтрофилов и увеличение числа сегментоядерных нейтрофилов с гиперсегментированными ядрами (мегалобластная анемия, болезни почек и печени, состояние после переливания крови).

Нейтрофильные лейкоциты (нейтрофилы)

Наиболее многочисленная разновидность белых клеток крови, они составляют 45-70% всех лейкоцитов. В зависимости от степени зрелости и формы ядра в периферической крови выделяют палочкоядерные (более молодые) и сегментоядерные (зрелые) нейтрофилы. Более молодые клетки нейтрофильного ряда – юные (метамиелоциты), миелоциты, промиелоциты – появляются в периферической крови в случае патологии и являются свидетельством стимуляции образования клеток этого вида. Длительность циркуляции нейтрофилов в крови составляет в среднем примерно 6,5 часов, затем они мигрируют в ткани.

Участвуют в уничтожении проникших в организм инфекционных агентов, тесно взаимодействуя с макрофагами (моноцитами), Т- и В-лимфоцитами. Нейтрофилы секретируют вещества, обладающие бактерицидными эффектами, способствуют регенерации тканей, удаляя из них повреждённые клетки и секретируя стимулирующие регенерацию вещества. Основная их функция – защита от инфекций путем хемотаксиса (направленного движения к стимулирующим агентам) и фагоцитоза (поглощения и переваривания) чужеродных микроорганизмов.

Увеличение числа нейтрофилов (нейтрофилез, нейтрофилия, нейтроцитоз), как правило, сочетается с увеличением общего числа лейкоцитов в крови. Резкое снижение количества нейтрофилов может привести к угрожающим жизни инфекционным осложнениям. Агранулоцитоз – резкое уменьшение числа гранулоцитов в периферической крови вплоть до полного их исчезновения, ведущее к снижению сопротивляемости организма к инфекции и развитию бактериальных осложнений.

Увеличение общего числа нейтрофилов:

  • Острые бактериальные инфекции (абсцессы, остеомиелит, аппендицит, острый отит, пневмония, острый пиелонефрит, сальпингит, менингиты, ангина, острый холецистит, тромбофлебит, сепсис, перитонит, эмпиема плевры, скарлатина, холера и др.);
  • Воспаление или некроз тканей (инфаркт миокарда, обширные ожоги, гангрена, быстро развивающаяся злокачественная опухоль с распадом, узелковый периартериит, острый ревматизм, ревматоидный артрит, панкреатит, дерматит, перитонит);
  • Состояние после оперативного вмешательства;
  • Миелопролиферативные заболевания (хронический миелолейкоз, эритремия);
  • Острые геморрагии;
  • Синдром Кушинга;
  • Приём кортикостероидов;
  • Эндогенные интоксикации (уремия, эклампсия, диабетический ацидоз, подагра);
  • Экзогенные интоксикации (свинец, змеиный яд, вакцины);
  • Выделение адреналина при стрессовых ситуациях, физическом напряжении и эмоциональных нагрузках (может привести к удвоению количества нейтрофилов в периферической крови).

Увеличение количества незрелых нейтрофилов (сдвиг влево):

  • Острые воспалительные процессы (крупозная пневмония);
  • Некоторые инфекционные заболевания (скарлатина, рожистое воспаление, дифтерия);
  • Злокачественные опухоли (рак паренхимы почки, молочной и предстательной желез) и метастазирование в костный мозг;
  • Миелопролиферативные заболевания, особенно хронический миелолейкоз;
  • Туберкулёз;
  • Инфаркт миокарда;
  • Кровотечения;
  • Гемолитический криз;
  • Сепсис;
  • Интоксикации;
  • Физическое перенапряжение;
  • Ацидоз и коматозные состояния.

Снижение числа нейтрофилов (нейтропения):

  • Бактериальные инфекции (тиф, паратиф, туляремия, бруцеллез, подострый бактериальный эндокардит, милиарный туберкулез);
  • Вирусные инфекции (инфекционный гепатит, грипп, корь, краснуха, ветряная оспа);
  • Малярия;
  • Хронические воспалительные заболевания (особенно у пожилых и ослабленных людей);
  • Почечная недостаточность;
  • Тяжелые формы сепсиса с развитием септического шока;
  • Гемобластозы (в результате гиперплазии опухолевых клеток и редукции нормального гемопоэза);
  • Острый лейкоз, апластическая анемия;
  • Аутоиммунные заболевания (системная красная волчанка, ревматоидный артрит, хронический лимфолейкоз);
  • Изоиммунный агранулоцитоз (у новорожденных, посттрансфузионный);
  • Анафилактический шок;
  • Спленомегалия;
  • Наследственные формы нейтропении (циклическая нейтропения, семейная доброкачественная хроническая нейтропения, постоянная наследственная нейтропения Костманна;)
  • Ионизирующая радиация;
  • Токсические агенты (бензол, анилин и др.);
  • Недостаточность витамина В12 и фолиевой кислоты;
  • Приём некоторых медикаментов (производные пиразолона, нестероидные противовоспалительные препараты, антибиотики, особенно левомицетин, сульфаниламидные препараты, препараты золота);
  • Прием противоопухолевых препаратов (цитостатики и иммунодепрессанты);
  • Алиментарно-токсические факторы (употребление в пищу испорченных перезимовавших злаков и др.).

Эозинофилы

После созревания в костном мозге эозинофилы несколько часов (около 3-4 часов) находятся в циркулирующей крови, а затем мигрируют в ткани, где продолжительность их жизни составляет 8-12 дней. Для человека характерно накопление эозинофилов в тканях, контактирующих с внешней средой – в лёгких, желудочно-кишечном тракте, коже, урогенитальном тракте. Их количество в этих тканях в 100-300 раз превышает содержание в крови.

При аллергических заболеваниях эозинофилы накапливаются в тканях, участвующих в аллергических реакциях, и нейтрализуют образующиеся в ходе этих реакций биологически активные вещества, тормозят секрецию гистамина тучными клетками и базофилами, обладают фагоцитарной и бактерицидной активностью.

Для эозинофилов характерен суточный ритм колебания в крови, самые высокие показатели отмечаются ночью, самые низкие – днем. Эозинопения (снижение числа эозинофилов в крови) часто наблюдается в начале воспаления. Увеличение числа эозинофилов в крови (эозинофилия) соответствует началу выздоровления. Однако ряд инфекционных заболеваний с высоким уровнем IgE характеризуются высоким числом эозинофилов в крови после окончания воспалительного процесса, что указывает на незаконченность иммунной реакции с её аллергическим компонентом. Снижение числа эозинофилов в активной фазе заболевания или в послеоперационном периоде часто свидетельствует о тяжелом состоянии пациента.

Уменьшение числа эозинофилов и их отсутствие (эозинопения и анэозинофилия):

  • Начальный период инфекционно-токсического (воспалительного) процесса;
  • Повышение адренокортикоидной активности;
  • Гнойно-септические процессы.

Базофилы

Наиболее малочисленная популяция лейкоцитов. Базофильные гранулоциты крови и тканей (к последним относятся и тучные клетки) выполняют множество функций: поддерживают кровоток в мелких сосудах, способствуют росту новых капилляров, обеспечивают миграцию других лейкоцитов в ткани. Участвуют в аллергических и клеточных воспалительных реакциях замедленного типа в коже и других тканях, вызывая гиперемию, формирование экссудата, повышенную проницаемость капилляров. Базофилы при дегрануляции (разрушении гранул) инициируют развитие анафилактической реакции гиперчувствительности немедленного типа. Содержат биологически активные вещества (гистамин; лейкотриены, вызывающие спазм гладкой мускулатуры; «фактор, активирующий тромбоциты» и др.).

Продолжительность жизни базофилов 8-12 суток, время циркуляции в периферической крови (как и у всех гранулоцитов) – несколько часов.

Увеличение количества базофилов (базофилия):

  • Аллергические реакции на пищу, лекарства, введение чужеродного белка;
  • Хронический миелолейкоз, миелофиброз, эритремия, лимфогранулематоз;
  • Гипофункция щитовидной железы (гипотиреоз);
  • Нефрит;
  • Хронический язвенный колит;
  • Гемолитические анемии;
  • Дефицит железа, после лечения железодефицитных анемий;
  • В 12 -дефицитная анемия;
  • После спленэктомии;
  • Лечение эстрогенами;
  • Во время овуляции, беременности, в начале менструаций;
  • Рак легких;
  • Истинная полицитемия;
  • Сахарный диабет;
  • Острый гепатит с желтухой.

Моноциты

Моноциты – самые крупные клетки среди лейкоцитов (система фагоцитирующих макрофагов). Участвуют в формировании и регуляции иммунного ответа. Моноциты составляют 2-10% всех лейкоцитов, способны к амебовидному движению, проявляют выраженную фагоцитарную и бактерицидную активность. Макрофаги – моноциты способны поглотить до 100 микробов, в то время как нейтрофилы – лишь 20-30. В очаге воспаления макрофаги фагоцитируют микробы, денатурированный белок, комплексы антиген-антитело, а также погибшие лейкоциты, поврежденные клетки воспаленной ткани, очищая очаг воспаления и подготавливая его для регенерации. Секретируют более 100 биологически активных веществ. Стимулируют фактор, вызывающий некроз опухоли (кахексин), обладающий цитотоксическим и цитостатическим эффектами на опухолевые клетки. Секретируемые интерлейкин I и кахексин воздействуют на терморегуляторные центры гипоталамуса, повышая температуру тела. Макрофаги участвуют в регуляции кроветворения, иммунном ответе, гемостазе, метаболизме липидов и железа.

Моноциты образуются в костном мозге из монобластов. После выхода из костного мозга циркулируют в крови от 36 до 104 часов, а затем мигрируют в ткани. В тканях моноциты дифференцируются в органо- и тканеспецифичные макрофаги. В тканях содержится в 25 раз больше моноцитов, чем в крови.

Увеличение числа моноцитов в крови (моноцитоз):

  • Вирусные инфекции (инфекционный мононуклеоз);
  • Грибковые, протозойные инфекции (малярия, лейшманиоз);
  • Период выздоровления после острых инфекций;
  • Гранулематозы (туберкулез, сифилис, бруцеллез, саркоидоз, язвенный колит);
  • Коллагенозы (системная красная волчанка, ревматоидный артрит, узелковый периартериит);
  • Болезни крови (острый монобластный и миеломонобластный лейкозы, хронические моноцитарный, миеломоноцитарный и миелолейкоз, лимфогранулематоз);
  • Подострый септический эндокардит;
  • Энтерит;
  • Вялотекущий сепсис.

Уменьшение числа моноцитов в крови:

  • Гипоплазия кроветворения;
  • Роды;
  • Оперативные вмешательства;
  • Шоковые состояния.

Лимфоциты

Лимфоциты являются главными клеточными элементами иммунной системы; образуются в костном мозге, активно функционируют в лимфоидной ткани. Главная функция лимфоцитов состоит в узнавании чужеродного антигена и участии в адекватном иммунологическом ответе организма.

Лимфоциты представляют собой уникальную по разнообразию популяцию клеток, происходящих из различных предшественников и объединяемых единой морфологией. По происхождению лимфоциты подразделяются на две основные субпопуляции: Т-лимфоциты и В-лимфоциты. Выделяется также группа лимфоцитов называемых «ни Т- ни В-», или «0-лимфоциты» (null lymphocytes). Клетки, входящие в состав указанной группы, по морфологической структуре идентичны лимфоцитам, но отличаются по происхождению и функциональным особенностям – клетки иммунологической памяти, клетки-киллеры, хелперы, супрессоры.

Разные субпопуляции лимфоцитов выполняют различные функции:

  • обеспечение эффективного клеточного иммунитета (в том числе отторжение трансплантата, уничтожение опухолевых клеток);
  • формирование гуморального ответа (синтез антител к чужеродным белкам - иммуноглобулинов разных классов);
  • регуляция иммунного ответа и координации работы всей иммунной системы в целом (выделение белковых регуляторов – цитокинов);
  • обеспечение иммунологической памяти (способности организма к ускоренному и усиленному иммунному ответу при повторной встрече с чужеродным агентом).

Следует иметь в виду, что лейкоцитарная формула отражает относительное (процентное) содержание лейкоцитов различных видов, и увеличение или снижение процентного содержания лимфоцитов может не отражать истинный (абсолютный) лимфоцитоз или лимфопению, а быть следствием снижения или повышения абсолютного числа лейкоцитов других видов (обычно нейтрофилов).

Увеличение количества лимфоцитов (лимфоцитоз):

  • Вирусная инфекция (инфекционный мононуклеоз, острый вирусный гепатит, цитомегаловирусная инфекция, коклюш, ОРВИ, токсоплазмоз, герпес, краснуха);
  • Заболевания лимфатической системы (острый и хронический лимфолейкоз, макроглобулинемия Вальденстрема);
  • Туберкулез;
  • Сифилис;
  • Бруцеллез;
  • Интоксикация (тетрахлорэтан, свинец, мышьяк).

Уменьшение количества лимфоцитов:

  • Острые инфекции и заболевания;
  • Начальная стадия инфекционно-токсического процесса;
  • Тяжелые вирусные заболевания;
  • Милиарный туберкулез;
  • Прием кортикостероидов;
  • Злокачественные новообразования;
  • Вторичные иммунные дефициты;
  • Почечная недостаточность;
  • Недостаточность кровообращения;
  • Прием препаратов с цитостатическим действием.

монобласт ® промоноцит ® моноцит ® макрофаг

Стволовая кроветворная клетка (СКК) ® ... ® гранулоцит-макрофагальный предшественник

(precursor, CFU,или КОЕ-колониеобразующая единица)

миелобласт ® промиелоцит ® миелоцит ® нейтрофил

GM-CSF, GM-CSF GM-CSF,

Высокая концентрация GM - CSF контролирует онтогенез макрофагов, низкая - нейтрофилов

Основные отличия фагоцитов - макрофагов и нейтрофилов

Нейтрофилы

Моноциты/макрофаги

Время жизни

в крови - несколько суток, в тканях - длительное время

Способность к делению

отсутствует

тканевые макрофаги способны к делению

Синтетические способности

зрелые нейтрофилы не способны к синтезу

высокая биосинтетическая активность

Способности к репарации мембраны и др. клеточных структур

отсутствует

Наличие антиоксидантных систем

Спектр выполняемых функций

узкий, фактически только фагоцитоз

широкий, участвуют как в реакциях неспецифического иммунитета, активируют и регулируют иммунный ответ

Характеристика фагоцитарного процесса, осуществляемого макрофагами и нейтрофилами

Нейтрофилы

Моноциты/макрофаги

Объекты фагоцитоза

Компоненты собственных разрушенных клеток и тканей, включая апоптические тела, внеклеточно размножающиеся бактерии и грибы, относящиеся к условно патогенным микроорганизмам

Те же, что и для нейтрофилов.

Биологическая цель фагоцитоза

Только киллинг (или разрушение крупных структур для подготовки к элиминации из организма)

Киллинг и распознавание чужеродности для подготовки и активации иммунного ответа

Жизнеспособность клетки после осуществления фагоцитоза

Сохраняется

CD - cluster of differentiation

CAM - cell adhesion molecule

Механизмы адгезии

Адгезия - явление комплексное, в нем одновременно или последовательно принимают участие разные молекулы адгезии («адгезивный каскад»). Фазы адгезии: касание, роллинг, прикрепление (активация и усиление адгезии).

За адгезивные свойства фагоцитов ответственны селектины и интегрины . С помощью селектинов осуществляется роллинг клетки по поверхности эндотелия, с помощью интегринов - твердое прикрепление к поверхности эндотелия.

Селектины (CD62): L- присутствуют на лейкоцитах (кроме активированных Т-клеток памяти),

P -на тромбоцитах,

E - на эндотелиальных клетках

Индукторы селектинов: 1) неспецифические - изменение рН, температруры, микроповреждения клеток, замедление скорости кровотока; 2) специфические - медиаторы и цитокины воспаления (gIFN, TNF, IL-1), митогены, нейропептиды.

Интегрины : CD18, CD11a, CD11b, CD11c

Регуляторы интегринов: 1) неспецифические - изменение рН, температруры, микроповреждения клеток, замедление скорости кровотока; 2) специфические - протеинкиназа С, аутоактивация (взаимодействие единичных сигнальных молекул той же специфичности), взаимодействие с другими адгезивными молекулами.

В целом все адгезивные молекулы объединены в 5 семейств: суперсемейство иммуноглобулинов, интегрины, селектины, кадхерины, протеогликаны и неклассифицированные представители.

Некоторые адгезивные молекулы: номенклатура, экспрессирующие клетки и функции

Фагоциты - основная группа клеток системы врожденного иммуни­тета. Они имеют миелоидное происхождение и обладают способностью к фагоцитозу (см. раздел 2.1.3). По морфологии и функции их разделяют на мононуклеарные клетки (моноциты/макрофаги) и нейтрофилы, что соответствует предложенному И.И.

Мечниковым разделению на макро- и микрофаги. Роль фагоцитов в иммунном ответе крайне многообразна. Они выполняют ряд ключевых функций во врожденном и в адаптивном имму­нитете. Активация фагоцитов происходит через многие поверхностные рецепторы. Ведущую роль в активации фагоцитов играют РЕК врожден­ного иммунитета (например, ТЬК, ИОБ-рецепторы, маннозные рецепто­ры, рецепторы-«мусорщики», рецепторы комплемента и многие другие). Ответная реакция развивается быстро, не требует пролиферации и диффе­ренцировки клеток.

Активация обычно происходит в два этапа: прайминг и собственно активация. Суть прайминга заключается в том, что предварительная обра­ботка клеток небольшим количеством стимулятора (1-й сигнал), действие которого не вызывает прямой активации, сопровождается усилением отве­
та фагоцитов на второй сигнал. В результате активированные фагоциты выполняют следующие функции:

Хемотаксис;

Фагоцитоз;

Образование активных форм кислорода;

Синтез оксида азота;

Синтез и секреция цитокинов и других биологически активных медиа- торных молекул (метаболиты арахидоновой кислоты, компоненты комплемента, факторы свертывания крови, белки матрикса, ферменты, противомикробные пептиды, гормоны и др.);

Бактерицидную активность;

Процессиг и презентацию антигена (профессиональные АПК - ДК, мононуклеарные фагоциты).

Основные типы клеток, участвующих в развитии воспаления - универ­сальной защитной реакции организма на повреждение, - нейтрофилы, моноциты, макрофаги, а также клетки эндотелия и фибробласты. Первыми в очаг воспаления мигрируют нейтрофилы (в первые часы, сутки), затем макрофаги (в течение нескольких дней) и самыми последними - лимфо­циты. При остром воспалении преобладают нейтрофилы и активирован­ные Т-хелперы, при хроническом воспалении больше макрофагов, ЦТЛ и В-лимфоцитов. Такая периодичность миграции лейкоцитов в очаг воспале­ния обусловлена хемокинами и молекулами адгезии.

Хемокины - группа низкомолекулярных цитокинов молекулярной массой 8-10 кДа, индуцирующих процесс миграции лейкоцитов из крови. В настоящее время идентифицировано больше 40 различных хемокинов. По химической структуре, а именно в зависимости от положения остат­ков цистеина в молекуле, выделяют четыре основные группы хемокинов (табл. 4-3).

Избирательное вовлечение различных популяций лейкоцитов в форми­рование очагов воспаления обеспечивается экспрессией различных рецеп­торов хемокинов. ТЫ-клетки и моноциты экспрессируют хемокиновый рецептор ССК5, что обеспечивает ответ на хемокин ССЬЗ. ТЬ2-клетки, эозинофилы и базофилы экспрессируют ССКЗ, необходимый для ответа на ССЫ1. Следует отметить, что обе группы клеток экспрессируют рецеп­торы ССК1 и ССК2, чем обусловлен ответ на ССЬ2, ССЬ7, ССЬ8 и ССЫЗ. Известно, что на нейтрофилах экспрессируются СХСК1 и СХСК2 - рецеп­торы ИЛ-8, СХС1Л и СХСЬ2.

Вызванное воспалением проникновение нейтрофилов из сосудов в ткани обеспечивается рядом адгезивных взаимодействий между лейкоцитами и клетками эндотелия, а также действием хемокинов.

В табл. 4-4 представ­лены некоторые клинически значимые молекулы адгезии и их лиганды. Выделяют две группы молекул адгезии: селектины и интегрины.

Семейство

хемокинов

Представители

семейства

Рецепторы Клетки-мишени Биологические эффекты
С

у-хемокины

Лимфотактин ХСВ В основном Т-лимфоциты Дифференцировка, миграция лим­фоцитов
СС

р-хемокины

Эотоксин ССПЗ Т-клетки, моноциты, эозино­филы Воспаление в тканях
ВА1\1ТЕЗ ССР1, ССПЗ, ССК5 Т-лимфоциты (ТИ2), дендритные клетки, 1\1К-клетки, моноциты, эозинофилы, базофилы Воспаление в тканях, дегрануляция базофилов, активация Т-клеток
М1Р-1а ССР1, ССВЗ, ССВ5 ТИ1 -лимфоциты, дендритные клетки, 1\1К-клетки, моноциты, базофилы Активация клеток, продуцирующих ИФН-у, конкурирует с ВИЧ-1 за свя­зывание с рецептором
М1Р-1 р ССВ1, ССВЗ, ССВ5 Активированные Т-клетки, дендритные клетки, !\1К-клетки, моноциты Конкурирует с ВИЧ-1 за связывание с рецептором
СХС

ос-хемокины

ИЛ-8 СХСВ1, СХСВ2 Нейтрофилы, Т-клетки Ангиогенез, активация нейтрофилов
50Р-1 а/р СХСЯ4 Т-клетки, СР34+-клетки - пред­шественники В-лимфоцитов (костный мозг) Хоминг лимфоцитов, развитие В-клеток
1Р-10 СХСРЗ Моноциты, [\1К-клетки, ТМ- лимфоциты Подавление ангиогенеза, активация клеток, продуцирующих ИФН-у
СВОа СХСВ2 Нейтрофилы Активация нейтрофилов
свор СХСВ2 Т-клетки Пролиферация фибробластов
ЗРОу СХСР2 Фибробласты Ангиогенез
р-те СХСВ2 Нейтрофилы Активация нейтрофилов, ангиогенез, резорбция тромба
СХХХС

5-хемокины

Фракталкин СХЗСВ1 Моноциты, Т-клетки Воспалительные процессы в мозге, адгезия лейкоцитов к эндотелию

ЭФФЕКТОРНЫЕ МЕХАНИЗМЫ АДАПТИВНОГО И ВРОЖДЕННОГО ИММУНИТЕТА

Таблица 4-4. Некоторые клинически значимые адгезивные молекулы
Молекула адгезии Лиганд Клинические

последствия

взаимодействия

Последствий дефекта экспрессии
Семейство ^-интегринов
\/1_А-4* (С049с1/ СЭ29), экспресси­рованы на лимфо­цитах и моноцитах УСАМ-1**, экс­прессирован на эндотелии Адгезия лимфоци­тов и моноцитов на эндотелии Нарушение миграции лимфоцитов и моноцитов в ткани
Семейство $2-интегринов
С018/СО а экс­прессированы на всех типах лей­коцитов 1САМ-1***, на эндотелии Адгезия всех типов лейкоци­тов к эндотелию сосудов Тяжелый иммунодефицит, прояв­ляющийся нейтропенией, возврат­ными инфекциями бактериальной и грибковой природы, уменьшени­ем способности нейтрофилов к хемотаксису в ткани


Различают Е-селектины (на клетках эндотелия), Ь-селектины (на лей­коцитах) и Р-селектины (на тромбоцитах). Селектины связываются с углеводными остатками на поверхности лейкоцитов и клеток эндотелия и участвуют в миграции клеток в очаг воспаления.

Интегрины - основные молекулы межклеточной адгезии. Это гетероди­меры, состоящие из а- и р-субъединиц, соединенных нековалентными свя­зями. Интегрины пронизывают клеточную мембрану и через адаптерные молекулы талин и винкулин связываются с цитоскелетом. В зависимости от типа р-цепи, входящей в состав молекулы, выделяют три семейства инте- гринов.

р^Интегрины обеспечивают связывание клеток с внеклеточным матрик­сом. р2-Интегрины участвуют в адгезии лейкоцитов к клеткам эндотелия. Р3-Интегрины обусловливают взаимодействие тромбоцитов и нейтро- филов. Дефицит р2-интегрина ЬРА-1 (С018/СБ11) приводит к развитию врожденного дефекта фагоцитов - синдрома дефицита адгезии лейкоцитов (ЬАЭ-синдром), сопровождающегося тяжело протекающими инфекцион-

ными заболеваниями бактериальной и грибковой природы, уменьшением миграции фагоцитов в ткани (см. раздел 11.2.5).

Вызванный воспалением процесс проникновения лейкоцитов в ткани из сосудистого русла обеспечивается рядом адгезивных взаимодействий и включает несколько этапов (рис. 4-20):

Роллинг (перекатывание);

Адгезию;

Проникновение в ткани.

Рассмотрим этапы проникновения лейкоцитов в ткани на примере ней­трофилов. Первый этап - роллинг (качение) нейтрофилов по поверхности клеток эндотелия - происходит при участии селектинов. В норме клетки эндотелия сосудов не несут молекул адгезии. При активации в очаге вос­паления клетки начинают экспрессировать Е-селектины и рецепторы для селектинов. Скорость нейтрофилов в кровотоке замедляется за счет взаи­модействия Е-селектина и углеводной детерминанты Ье\У1$-Х, связаннйой с СБ15-молекулой нейтрофила.

Ь-селектины нейтрофилов взаимодействуют с сиаломуцином (СБ34), расположенным на эндотелии. Активированные эндотелиальные клетки секретируют ИЛ-8, индуцирующий смену селектинов на поверхности ней­трофилов и стимулирующий экспрессию (52-интегринов. Активация клеток эндотелия происходит при развитии местной воспалительной реакции под действием локально образующихся провоспалительных цитокинов ИЛ-1р и ФНО-а.

Второй этап - адгезия - образование прочных связей между лейкоци­тами и эндотелиальными клетками, осуществляемое за счет интегрино- вых взаимодействий. Лигандами Р2-иптегринов служат молекулы группы 1САМ.

Третий этап - миграция нейтрофилов между клетками эндотелия (транс­эндотелиальная миграция) осуществляется под действием хемокинов.

Последующая миграция нейтрофилов в ткани основана на хемотакси­се. Хемоаттрактанты для нейтрофилов существуют в очаге воспаления.

Цитокин(хемокин)зависимая

К ним относятся фактор активации тромбоцитов (ФАТ), лейкотриен В4, компоненты комплемента (С5а), Ы-формил-метионил-пептиды бакте­рий, ИЛ-8. Провоспалительные цитокины повышают уровень экспрессии р2-интегринов, 1САМ-1, ИЛ-8.

В зоне воспаления фагоциты начинают распознавать опсонизированные патогены. В качестве опсонинов выступают чаще всего инактивированные компоненты комплемента \СЗЪ и молекулы 1^0. В распознавании опсо- низированных патогенов участвуют рецепторы комплемента: СК1, СКЗ (у макрофагов важную роль играет СК4) и РсуК (СБ64, СБ32, СБ16). Эти

взаимодеиствия индуцируют процесс поглощения.

Нейтрофилы и макрофаги обладают мощным потенциалом для уничто­жения патогенов. Выделяют кислородзависимые и кислороднезависимые механизмы бактерицидное™ фагоцитов.

Резидентные макрофаги удаляют апоптозные клетки и эндогенные моле­кулы организма, модифицированные вследствие патологического процесса (так называемые эндогенные лиганды: например, модифицированный кол­лаген, белки теплового шока, липиды низкой плотности и др.), с помощью рецепторов-мусорщиков. В данном случае активации макрофагов и разви-

Инфекция

То11-подобные рецепторы

/ф СР14 (рецептор у к липополисахариду)

Рецептор, распознающий остатки маннозы

(фактор хемотаксиса нейтрофилов)

(активирует МК-клетки, способствует дифференцировке ТНО в ТМ)

> Другие медиаторы: простагландины, радикалы кислорода, оксид азота

тия механизмов цитотоксичности не происходит. Поглощение чужеродных клеток и патогенов приводит к активации макрофагов.

Функциональная активность макрофагов регулируется цитокинами. Цитокины, продуцируемые ТЫ- и ТЬ2-клетками, индуцируют в макрофаге разные реакции. ИФН-у стимулирует выработку активных форм кислорода, провоспалительных цитокинов, экспрессию МНС-Н.

ИЛ-4 и ИЛ-13 угнетают эти функции макрофага, но способствуют обра­зованию гигантских клеток в гранулемах, выработке факторов роста, сти­мулируя тем самым заживление повреждений ткани. Эти цитокины вызы­вают альтернативную активацию макрофагов (см. рис. 3-32, рис. 3-33).

Исключительно важную роль в активации фагоцитов и в реализации их кислородзависимой бактерицидной функции играют активные формы кислорода и оксида азота, образуемые в процессе кислородного или дыха­тельного взрыва.

В основе дыхательного взрыва лежит усиление потребления глюкозы и ее расщепление с участием ЫАЮРН по механизму гексозомонофосфатного шунта, что сопровождается накоплением ЫАБРН. Взаимодействие ЫАОРН с молекулой кислорода при участии ИАОРН-оксидазы приводит к обра­зованию супероксид аниона (О2-), из которого с участием ионов водорода образуются потенциально токсичные для бактерий гидроксильные ради­калы (ОН), перекись водорода (Н202) и синглетный кислород. Этот про­цесс начинается спонтанно после образования фагосомы перед слиянием с лизосомой. Наиболее выражен бактерицидный эффект в фаголизосомах. Образование Н202 происходит спонтанно и при участии супероксиддисму- тазы. Фермент миелопероксидаза обеспечивает образование гипохлорида из Н202 с участием ионов галогенов. Оксид азота (N0) образуется в резуль­тате расщепления аргинина до цитруллина и катализируется ЫО-синтазой (рис. 4-22).

Оксид азота (N0) участвует во многих физиологических и патологиче­ских процессах как на клеточном, так и на организменном уровне, оказывая защитное, регуляторное и повреждающее действия.

Регуляторное действие N0 проявляется в поддержании тонуса и прони­цаемости сосудов, подавлении адгезии тромбоцитов, в модуляции клеточ­ной адгезии, нейротрансмиссии и бронходилатации, а также в регуляции некоторых функций почек и иммунной системы.

Под защитным действием оксида азота подразумевают его антиокисли- тельные свойства, т.е, защиту от агентов окислительного стресса (перекись водорода, алкильные гидроперекиси, супероксидный анион-радикал и др.), снижение адгезии лейкоцитов и антитоксический эффект, в частности, про­тив ФНО-а.

Повреждающее действие оксида азота оказывается через подавление функций ферментов, индукцию процессов перекисного окисления липидов

оксидаза

г;г

ОН НОС1 01400" 8-нитрозотиолы

Рис. 4-22. Схема образования бактерицидных веществ фагоцитами (активных форм кис­лорода и оксида азота).

и повреждения ДНК клетки, повышение чувствительности клетки к дей­ствию радиации, алкилирующих агентов и токсичных металлов, а также через истощение антиокислительных возможностей клетки. Непрямое

цитотоксическое действие оксида азота осуществляется за счет изменения цитокинового равновесия и опосредованной ИЛ-12 активации ЫК-клеток и ЦТЛ. Сам по себе оксид азота не является мощным цитотоксическим агентом, но он может усиливать чувствительность клеток к действию дру­гих цитотоксических веществ. Наиболее выраженной антибактериальной активностью обладают соединения, образовавшиеся при взаимодействии активных форм кислорода и оксида азота. В результате взаимодействия N0 с активными формами кислорода и некоторыми другими соедине­ниями образуются цитотоксические вещества, включая пероксинитрит (ОЖЮ), 5-нитрозотиолы (К5Ы0), диоксид азота (ЬГО2), динитроген три- оксид (]М203), динитроген тетраоксид (И204) и железодинитрозильные комплексы (ЬЫ1С).

Эффекты оксида азота принято разделять на основные и опосредо­ванные. Основные эффекты включают реакции, в которых он непосред­ственно взаимодействует со специфическими биологическими моле­кулами (например, с гуанилатциклазой, цитохромом Р450 и др.).

Опосредованные эффекты действия оксида азота связаны с реактивными формами азота, образующимися при взаимодействии N0 с кислородом или с супероксидным анион-радикалом.

Основные и побочные эффекты реакций с непосредственным участием оксида азота определяются его локальной концентрацией. Основные эффек­ты вероятны при низких концентрациях оксида азота (меньше 1 мкМ), тогда как побочные эффекты, включая образование радикалов, становятся воз­можными при более высоких его концентрациях (больше 1 мкМ).

Оксид азота 1п уЬю образуется с участием 1М0-синтазы (N05), суще­ствующей у млекопитающих в трех изоформах: пЫ05 - нейтральной (1-й тип); 1Ы05 - индуцибельной (2-й тип); еЫ05-синтаза - эндотелиаль­ной (3-й тип).

В макрофагах функционирует 1Ы05, экспрессию которой стимулируют

некоторые цитокины и продукты микроорганизмов, часто действующие в синергизме. ЫО-синтазы типов ] и 3 называются также сЫ05 - избира­тельными (существуют в клетках и могут быть активированы притоком кальция, который в последующем связывается с кальмодулином). В при­сутствии 1И08 оксид азота вырабатывается в больших количествах и часто оказывает побочные эффекты, такие, как перекисное окисление липидов и гидроксилирование, образование нитрозаминов и нитротирозина.

На рис. 4-23 представлены некоторые типы рецепторов, участвующих в фагоцитозе и апоптозе.



Скавенджер-
  • 5. Гуморальные факторы врожденного иммунитета (белки системы комплемента, белки острой фазы, белки теплового шока, цитокины, антимикробные пептиды и др.)
  • 6. Цитокиновая сеть. Классификация и функция цитокинов.
  • 7. Эндоцитозные, сигнальные и растворимые рецепторы врожденного иммунитета.
  • 8. Секреторные рецепторы врожденного иммунитета.
  • 9. Система комплемента
  • 10. Роль белков теплового шока и острой фазы.
  • 11. Характеристика антимикробных пептидов и их продуцентов.
  • 12. Интерфероны, природа. Способы получения и применения.
  • 13. Роль и. И. Мечникова в формировании учения об иммуните­те. Неспецифические факторы защиты организма.
  • 14. Клеточные факторы врожденного иммунитета (макрофаги, нейтрофилы, естесственные киллеры, дендритные клетки, тучные клетки, базофилы, nk и др.).
  • 15. Фагоцитоз (стадии фагоцитоза, кислородный взрыв и др.)
  • 16. Функции естественных киллеров.
  • 17. Мембранные и цитозольные рецепторы врожденного иммунитета (tlr, nlr, rig). См. Ответ 7.
  • 18. Классификация и характеристика дендритных клеток.
  • 21. Антигены микробов и клеток человека (cd, mhc). Гаптены
  • 22. Характеристика Th1, Th2, Th17 и Treg-лимфоцитов.
  • 23. Иммунокомпетентные клетки; t- и в-лимфоциты, антигенпрезентирующие клетки.
  • 25. Презентация антигена. Кооперация, основные принципы дифференцировки т- и в-лимфоцитов.
  • 26. Формы иммуного ответа. Регуляция иммунного ответа.
  • 27)Теории иммунитета. Генетика формирования т и в-клеточных рецепторов.
  • 28) Иммунологическая толерантность,механизмы
  • 29)Клеточный иммунный ответ (цитотоксический и воспалительный иммунный ответ, роль цитокинов, т-хелперов и макрофагов)
  • 30)Гуморальный иммунный ответ (роль цитокинов, Th-2лимфоцитов и в-лимфоцитов).
  • 31) Антитела. Классы, структура и функции иммуноглобулинов.
  • 32) Антигенные свойства иммуноглобулинов, изотипы, аллотипы, идиотипы. Полные и неполные антитела.
  • 33) Моноклональные антитела.Получение(гибридомная технология) и применение.
  • 34) Генетика антителообразования.
  • 35) Иммунологическая память. Первичный и вторичный ответ.
  • 36) Мех-мы противоинфекционного (противобактериального и противовирусного) иммунитета
  • 37) Мех-мы противогельминтного, противоопухолевого и трансплантационного иммунитета.
  • 38)Гиперчувствительность немедленного типа. Мех-мы возникновения,клиническая значимость.
  • 39) Анафилактический шок и сывороточная болезнь. Причины возникновения.Механизм.Их предупреждение.Аллергоспецифическая иммунотерапия.
  • 40. Механизм гиперчувствительности замедленного типа. Клинико-диагностическое значение
  • 44. Оценка иммунного статуса: основные показатели и методы их определения.
  • 45. Механизмы развития аутоиммуных реакций.
  • 46. Практическое использование серологических реакций.
  • 47. Иммунологические реакции в диагностике инфекционных и неинфекционных заболеваний.
  • 50. Реакция пассивной гемагглютинации. Компоненты. Применение.
  • 51. Реакция коагглютинации. Механизм, компоненты. Применение.
  • 53. Реакция преципитации
  • 54. Реакции с использованием меченых антител или антигенов
  • 55. Реакция связывания комплемента
  • 56. Реакция нейтрализации
  • 57. Реакция иммунофлюоресценции (риф,методКунса)
  • 58. Иммуноферментный метод или анализ
  • 59. Иммунная электронная микроскопия
  • 60. Проточная цитометрия
  • 61. Серологические реакции, используемые для диагнос­тики вирусных инфекций.
  • 62. Диагностикумы. Получение, применение.
  • 63. Моноклональные антитела. Получение, применение.
  • 64 Методы приготовления и применения агглютинирую­щих, адсорбированных сывороток.
  • 65 Вакцины
  • 4.2.5.1. Иммунные сыворотки и иммуноглобулины
  • 14. Клеточные факторы врожденного иммунитета (макрофаги, нейтрофилы, естесственные киллеры, дендритные клетки, тучные клетки, базофилы, nk и др.).

    Нейтрофилы и макрофаги.

    Способностью к эндоцитозу (поглощению частиц с образованием внутриклеточной вакуоли) обладают все эукариотические клетки. Именно таким образом внутрь клеток проникают многие патогенные микроорганизмы. Однако в большинстве инфицированных клеток отсутствуют механизмы (либо они слабы), обеспечивающие деструкцию патогена.

    Нейтрофилы и мононуклеарные фагоциты имеют общее миелоидное происхождение из стволовой кроветворной клетки. Однако эти клетки различаются рядом свойств.

    Нейтрофилы - наиболее многочисленная и подвижная популяция фагоцитов, созревание которых начинается и заканчивается в костном мозгу. Около 70% всех нейтрофилов сохраняется в виде резерва в костно-мозговых депо, откуда они под влиянием соответствующих стимулов (провоспалительных цитокинов, продуктов микробного происхождения, С5а-компонента комплемента, колониестимулирующих факторов, кортикостероидов, катехоламинов) могут экстренно перемещаться через кровь в очаг тканевой деструкции и участвовать в развитии острого воспалительного ответа. Нейтрофилы - это «отряд быстрого реагирования» в системе антимикробной защиты.

    Нейтрофилы - короткоживущие клетки, продолжительность их жизни около 15 сут. Из костного мозга они выходят в кровоток уже зрелыми клетками, утратившими способность к дифференцированию и пролиферации. Из крови нейтрофилы перемещаются в ткани, в которых они либо гибнут, либо выходят на поверхность слизистых оболочек, где и заканчивают свой жизненный цикл.

    Моноциты, в отличие от нейтрофилов, - незрелые клетки, которые, попадая в кровяное русло и далее в ткани, созревают в тканевые макрофаги (плевральные и перитонеальные, купферовские клетки печени, альвеолярные, интердигитальные клетки лимфатических узлов, костного мозга, остеокласты, микроглиоциты, мезангиальные клетки почек, сертолиевы клетки яичек, клетки Лангерганса и Гринстейна кожи). Продолжительность жизни мононуклеарных фагоцитов от 40 до 60 сут.

    Макрофаги - не очень быстрые клетки, но они рассеяны во всех тканях, и, в отличие от нейтрофилов, им нет необходимости в столь срочной мобилизации. Если продолжить аналогию с нейтрофилами, то макрофаги в системе врожденного иммунитета - это «войска специального назначения».

    Важной особенностью нейтрофилов и макрофагов является наличие в их цитоплазме большого количества лизосом. Нейтрофилы и макрофаги чутко реагируют на любые изменения гомеостаза. Для этой цели они оснащены богатым арсеналом рецепторов, располагающихся на их цитоплазматической мембране.

    Основной функцией нейтрофилов и макрофагов является фагоцитоз.

    Не все микроорганизмы чувствительны к бактерицидным системам фагоцитов. Гонококки, стрептококки, микобактерии и другие выживают после контакта с фагоцитами, такой фагоцитоз называется незавершенным.

    Фагоциты, помимо фагоцитоза (эндоцитоза), могут осуществлять свои цитотоксические реакции путем экзоцитоза - выделения своих гранул наружу (дегрануляция) - таким образом фагоциты осуществляют внеклеточный киллинг. Нейтрофилы, в отличие от макрофагов, способны образовывать внеклеточные бактерицидные ловушки - в процессе активации клетка выбрасывает наружу нити ДНК, в которых располагаются гранулы с бактерицидными ферментами. Благодаря липкости ДНК бактерии приклеиваются к ловушкам и под действием фермента погибают.

    Нейтрофилы эффективны при инфекциях, вызванных внеклеточными патогенами (гноеродные кокки, энтеробактерии и др.), индуцирующими развитие острого воспалительного ответа. При таких инфекциях эффективна кооперация нейтрофил-комплемент-антитело. Макрофаги защищают от внутриклеточных патогенов (микобактерии, риккетсии, хламидии и др.), вызывающих развитие хронического гранулематозного воспаления, где главную роль играет кооперация макрофаг-Т- лимфоцит.

    Помимо участия в антимикробной защите, фагоциты участвуют в удалении из организма отмирающих, старых клеток и продуктов их распада, неорганических частиц (уголь, минеральная пыль и др.). Фагоциты (особенно макрофаги) являются антигенпредставляющими, они обладают секреторной функцией, синтезируют и выделяют наружу широкий спектр биологически активных соединений: цитокины (интерлейкины-1, 6, 8, 12, фактор некроза опухоли), простагландины, лейкотриены, интерфероны α и γ. Благодаря этим медиаторам фагоциты активно участвуют в поддержании гомеостаза, в процессах воспаления, в адаптивном иммунном ответе, регенерации.

    Эозинофилы относятся к полиморфно-ядерным лейкоцитам. Они отличаются от нейтрофилов тем, что обладают слабой фагоцитарной активностью. Эозинофилы поглощают некоторые бактерии, но внутриклеточный киллинг у них менее эффективен, чем у нейтрофилов.

    Естественные киллеры. Естественные киллеры - большие лимфоцитоподобные клетки, которые происходят из лимфоидных предшественников. Они содержатся в крови, тканях, особенно их много в печени, слизистой оболочке репродуктивной системы женщин, селезенке. Естественные киллеры, как и фагоциты, содержат лизосомы, но фагоцитарной активностью не обладают.

    Беляева А.С., Ванько Л.В., Матвеева Н.К., Кречетова Л.В.

    НЕЙТРОФИЛЬНЫЕ ГРАНУЛОЦИТЫ КАК РЕГУЛЯТОРЫ ИММУНИТЕТА

    ФГБУ «Научный центр акушерства, гинекологии и перинатологии имени академика В.И. Кулакова» Минздрава России, 117997, Москва, Россия

    Результаты многих исследований подтверждают ключевую роль нейтрофильных гранулоцитов в инактивации вне-и внутриклеточных бактерий, вирусов, грибов. Наряду с эффекторной функцией, данные клетки обладают широким спектром механизмов, способствующих привлечению клеток адаптивного иммунитета к очагу воспаления, индукции их созревания, дифференцировки, пролиферации и активации, играют важную роль в формировании микроокружения и моделировании специфического антигензависимого ответа. В обзоре рассматривают значение субпопуляций нейтрофильных гранулоцитов в поддержании гомеостаза клеток адаптивного иммунитета, представлены данные об иммунорегуляторном воздействии продуктов активации нейтрофилов на дендритные клетки, Т- и В-лимфоциты.

    Ключевые слова: нейтрофильные гранулоциты; иммунорегуляторная роль; миелоидные супрессорные клетки; Т-независимый иммунный ответ.

    Для цитирования: Беляева А.С., Ванько Л.В., Матвеева Н.К., Кречетова Л.В. Нейтрофильные гранулоциты как регуляторы иммунитета. Иммунология. 2016; 37 (2): 129-133. DOI: 10.18821/0206-4952-2016-37-2-129-133

    Belyaeva A.S., Van"ko L.V., Matveeva N.K., Krechetova L.V. NEUTROPHIL GRANULOCYTES AS A REGULATORS OF IMMUNITY

    Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russian Federation, 117997, Moscow, Russia

    Many studies confirm a key role of neutrophils in the inactivation of extra- and intracellular bacteria, viruses, fungi. Along with their effector function, neutrophils have a wide spectrum of mechanisms that provide signals for the attraction, activation, maturation and differentiation of cells of adaptive immunity. Neutrophil granulocytes play an important role in the regulation of specific antigen-dependent response and in the microenvironment formation. The present review demonstrates a value of neutrophils in the maintenance of homeostasis of dendritic cells, T- and B-cells.

    Keywords: neutrophil granulocytes, immunoregulatory role; myeloid-derived suppressor cells; T-independent immune response.

    For citation: Belyaeva A.S., Van"ko L.V., Matveeva N.K., Krechetova L.V. Neutrophil granulocytes as a regulators of immunity. Immunologiya. 2016; 37 (2): 129-133. DOI: 10.18821/0206-4952-2016-37-2-129-133

    For correspondence: Belyaeva Anastasiya Sergeevna, junior researcher of laboratory of clinical immunology, E-mail: [email protected].

    conflict of interest. The authors declare no conflict of interest.

    Funding. The study had no sponsorship.

    Received 04.03.15 Accepted 18.06.15

    К настоящему времени значительно изменилось традиционное представление о нейтрофильных гранулоцитах (НГ). Данная гетерогенная популяция клеток является одним из главных эффекторов врожденного иммунитета. Обладая способностью быстро мигрировать к месту инвазии микроорганизмов и располагая обширным спектром механизмов их инактивации, НГ выступают в роли первой линии иммунной защиты. Наличие сегментированного ядра у зрелых форм позволяет НГ проникать через мелкие поры диаметром 3-5 мкм, купировать инфекционный процесс в месте инвазии патогенов, препятствуя их распространению . Результаты многих исследований свидетельствуют о ключевой роли НГ

    Для корреспонденции: Беляева Анастасия Сергеевна, мл. науч. сотр. лаб. клинической иммунологии, E-mail: [email protected]

    в инактивации вне- и внутриклеточных бактерий, вирусов, грибов. Конститутивно и при стимуляции патогенами фагоциты выделяют антимикробные белки, ядерный хроматин и широкий спектр растворимых медиаторов, индуцирующих воспаление и поддерживающих прогрессию воспалительной реакции .

    Возрождение интереса исследователей к НГ обусловлено тем, что наряду с эффекторной функцией, данные клетки обладают мощным иммунорегуляторным потенциалом. В зависимости от степени зрелости и фенотипических особенностей, НГ могут способствовать развитию врожденного и адаптивного иммунного ответа или приводить к формированию толерантности к специфическому антигену . НГ воздействуют на другие клетки иммунной системы как путем прямых межклеточных взаимодействий, реализующихся во вторичных лимфоидных органах , так и дистанционно, посредством растворимых медиаторов . Секретируемые

    в большом количестве активированными нейтрофилами медиаторы способствуют созреванию, дифференцировке, активации клеток врожденного и, в особенности, адаптивного иммунитета. Хемокины, выделяемые НГ при попадании в организм чужеродных структур, взаимодействуют с рецепторами на поверхности других клеток иммунной системы, инициируя миграцию последних к месту инвазии патогенов. В последние годы внимание исследователей привлекают сетчатые структуры, состоящие из ядерного хроматина и гранул антимикробных протеинов, названные нейтрофильными внеклеточными ловушками (NET - neutrophil extracellular traps). Они высвобождаются в результате особой формы клеточной смерти (нетоза) и служат для иммобилизации и деградации микробных патогенов, препятствуя их распространению . Помимо эффекторной функции, NET способны оказывать иммунорегуляторное воздействие на другие клетки иммунной системы: поддерживают пролиферацию, снижают порог активации клеток адаптивного иммунитета, усиливают секрецию цитокинов .

    Большой интерес для исследователей представляет реализация иммунорегуляторной функции НГ не только у здоровых индивидуумов, но и при развитии заболеваний.

    Взаимодействие нейтрофильных гранулоцитов с дендритными клетками

    Дендритные клетки (ДК) занимают пограничное положение между врожденным и адаптивным иммунитетом: с одной стороны, они имеют много общего с клетками врожденного иммунитета предшественника, сходный с макрофагами фенотип, обладают способностью к фагоцитозу, с другой - пре-зентируют антиген в составе молекул MHC II Т-лимфоцитам, что во многом определяет тип и интенсивность специфического антигензависимого ответа. Существенный вклад в регуляцию Т-зависимого ответа вносит степень зрелости ДК, вид и количество синтезируемых ими активационных молекул, соотношение плазмацитоидных и миелоидных ДК .

    Созревание и активация ДК происходят при воздействии на них антигенов бактерий и вирусов, механического стресса, Т-лимфоцитарных стимулов. Большое значение НГ в развитии ДК подтверждается в исследованиях in vitro: широкий спектр цитокинов и ростовых факторов, секретируемых НГ конститутивно и при активации, необходим на всех этапах развития ДК .

    Важную роль в созревании и активации ДК, привлечении незрелых форм к месту инвазии патогенов имеют бактерицидные факторы гранул нейтрофилов: а-дефензины, катели-цидины, лактоферрин и амфотерин (HMGB1) . Данные белки способны воздействовать на ДК самостоятельно и в составе NET, образуя комплекс с ДНК нейтрофилов. Действие некоторых из них осуществляется посредством связывания с рецепторами на поверхности ДК. Показано, что при отсутствии на ДК TLR4 или при блокировании сигнала антителами к данному рецептору значительно снижается степень активации ДК при их инкубации с лактоферрином . Степень воздействия амфотерина на клетки также определяется интенсивностью экспрессии на их поверхности рецепторов TLR2, TLR4, TLR9 и рецепторов для конечных продуктов гликирования . Бактерицидные пептиды азурофильных гранул (а-дефензины) могут выступать в роли адъювантов, усиливая иммунный ответ на антигены .

    Помимо активирующего влияния бактерицидных пептидов, в экспериментах in vitro и in vivo доказано ингибирую-щее воздействие на ДК миелопероксидазы (МРО) - одного из главных ферментов, содержащихся в лизосомах НГ. При активации клеток бактериальными и провоспалительными стимулами, МРО секретируется во внеклеточную среду и вступает в контакт с ДК, что приводит к достоверному снижению секреции ими ГЬ-12р70 и уменьшению экспрессии поверхностного маркера CD86 .

    В процессе созревания ДК после поглощения антигена

    изменяется набор их поверхностных рецепторов, в том числе хемокиновых. Наивные ДК экспрессируют CCR1, CCR2, CCR5, CCR6, CXCR1, CXCR2, а более зрелые несут на своей поверхности CCR7 и CCR9, поэтому секреция заданного спектра хемокинов нейтрофилами инициирует миграцию ДК определенной степени дифференцировки .

    Кроме дистанционного воздействия цитокинов и продуктов секреции гранул, НГ способны активировать ДК путем непосредственного взаимодействия с рецепторами на их поверхности, приводящего к экспрессии молекул CD40, CD80, CD86, HLA-Dr на ДК. Важным участником этого процесса является С-лектин DC-SIGN на ДК, взаимодействующий с молекулами адгезии на поверхности нейтрофилов .

    Активация ДК сопровождается более интенсивным про-цессингом антигена, экспрессией ко-стимуляторных поверхностных молекул, секрецией цитокинов, необходимых для поддержания гомеостаза популяции Т-лимфоцитов и их дифференцировки. Таким образом, посредством активации ДК нейтрофильные гранулоциты способны оказывать иммунорегулирующее влияние на антиген-специфический Т-зависимый иммунный ответ.

    взаимодействие нейтрофильных гранулоцитов с Т-клетками

    Т-лимфоциты признаны главными эффекторами адаптивного антигензависимого иммунного ответа. Их участие в иммунном ответе необходимо для эффективной защиты организма при вирусных инфекциях, опухолевых процессах, аутоиммунных заболеваниях, а также при формировании материнской толерантности к плоду . Соотношение субпопуляций цитотоксических, хелперных (Th1, Th2, Th17) и регуляторных (Tre) Т-лимфоцитов определяет тип иммунного ответа: клеточный, гуморальный, иммунологическая толерантность. При развитии первичного иммунного ответа небольшая часть Т-лимфоцитов трансформируется в Т-клетки памяти, обладающие большим пролиферативным потенциалом и способные быстро отвечать на повторный антигенный стимул . Под воздействием хемоаттрактантов, большая часть которых секретируется активированными НГ, происходит миграция Т-лимфоцитов. Спектр хемокиновых рецепторов специфичен для каждой субпопуляции Т-клеток. Так, для Thl-клеток характерна экспрессия CXCR3, CCR1, CCR2, CCR5, для Th2 - CCR3 и CCR4, для ТЫ7-клеток - CCR6. Treg несут на своей поверхности молекулы

    CCR8, а CD8+ клетки памяти - CCR5. В зависимости от типа продуцируемых хемокинов, нейтрофилы способны избирательно инициировать миграцию Т-клеток той или иной субпопуляции .

    Современные исследования доказывают способность НГ мигрировать во вторичные лимфоидные органы и презенти-ровать антиген Т-клеткам, что является одним из путей имму-норегулирующего воздействия НГ на антигенспецифический иммунный ответ . В экспериментах in vitro показано, что культивирование полиморфноядерных нейтрофилов с IFNy и GM-CSF приводит к экспрессии на их поверхности MHC II и ко-стимуляторных молекул CD80 (B7.1) и CD86 (B7.2), усиливающих пролиферацию Т-клеток. Наибольшим эффектом обладают аутологичные нейтрофилы .

    В процессе системного воспаления и при других патологиях НГ могут оказывать ингибиторное воздействие на Т-клеточное звено иммунитета. В настоящее время большое внимание уделяется супрессорным клеткам миелоидного происхождения (MDSC). У здоровых взрослых незрелые мие-лоидные клетки дифференцируются в макрофаги, дендритные клетки и гранулоциты в костном мозге, и MDSC редко обнаруживаются в периферической крови. Однако при некоторых патологических состояниях дифференцировка этих клеток изменяется, приводя к накоплению циркулирующих супрессорных миелоидных клеток. Эта регуляторная популяция недифференцированных клеток способна подавлять

    врожденный и адаптивный иммунный ответ, оказывая значительное ингибирующее воздействие на NK- и Т-клетки. Популяция MDSC гетерогенна, представлена фенотипически неоднородными клетками, экспрессирующими ряд цитоки-нов и хемокинов. Главными субпопуляциями являются гра-нулоцитарная (PMN-MDSC) и моноцитарная (Mo-MDSC). Они несут на своей поверхности различный набор рецепторов и реализуют свое ингибиторное воздействие на Т-клетки при участии различных механизмов . Баланс между этими субпопуляциями определяет направление дифференци-ровки наивных CD4+ Т-лимфоцитов и может влиять на тип иммунного ответа: развитие воспаления или индукция толерантности .

    Супрессорная функция MDSC может быть реализована напрямую или через индукцию FOXP3+ Т-регуляторных клеток в присутствии IFNy и IL-10 . Основными механизмами прямой иммуносупрессии Т-клеточного ответа PMN-MDSC являются высокий уровень генерации активных форм кислорода (АФК) и удаление из микроокружения аминокислот, необходимых для пролиферации Т-лимфоцитов. Усиление генерации АФК PMN-MDSC приводит к подавлению поверхностной экспрессии дзета-цепи рецептора Т-клеток (TCRQ, блокированию Nf-кВ пути активации, индукции гибели Т-лимфоцитов за счет снижения экспрессии ими антиапоптотического фактора Bcl-2 . Способность PMN-MDSC секретировать аргиназу-1 является вторым важным механизмом ингибирования Т-клеточного звена иммунитета. Данный фермент катализирует расщепление аргинина, недостаток которого во внеклеточной среде приводит к нарушению пролиферации Т-лимфоцитов и снижению экспрессии TCRZ на их поверхности . Предполагают, что ингибиторы аргиназы могут быть перспективными фармакологическими веществами для лечения нежелательного подавления иммунного ответа .

    Изменение активности аргиназы и метаболизма L-аргинина считается механизмом, вносящим вклад в супрессию материнской иммунной системы во время беременности . В периферической крови женщин с нормально протекающей беременностью отмечено повышенное содержание MDSC, однако после родоразрешения содержание клеток данной популяции в циркуляторном русле женщины резко сокращается . В пуповинной крови новорожденных детей в большом количестве обнаруживаются супрессорные клетки гранулоцитарной природы. Вероятно, эмбриональные MDSC вносят вклад в поддержание толерантности матери к плоду, способствуют развитию Тге -клеток, ингибируют воспалительный иммунный ответ . В течение первых месяцев жизни содержание MDSC в периферической детской крови стремительно убывает. Отмечен потенциальный вклад данных клеток в подавление иммунного ответа новорожденных детей на многие инфекции, характерные для раннего периода постнатальной жизни. Понимание их роли в формировании иммунитета новорожденных важно для улучшения схем вакцинации и снижения уровня детской смертности, обусловленной инфекционными заболеваниями .

    Большое значение придается MDSC в подавлении иммунного ответа при трансплантациях, онкологических, инфекционно-воспалительных заболеваниях . При аутоиммунных патологиях супрессорное воздействие популяции MDSC распространяется не только на Т-клетки, но и на В-клеточное звено иммунитета .

    взаимодействие нейтрофильных гранулоцитов с в-клетками

    В-клетки, происходящие из костного мозга, заселяют вторичные лимфоидные органы, где под влиянием микроокружения происходит их созревание. Конечным этапом дифференцировки В-лимфоцитов является их трансформация в антителопродуцирующие плазматические клетки после взаимодействия с антигеном. В зависимости от природы ан-

    тигенов, их подразделяют на Т-зависимые и Т-независимые. Иммунный ответ на Т-зависимые белковые антигены развивается при участии фолликулярных В2-клеток, которые распознают антиген, поглощают его, расщепляют и презен-тируют Th-лимфоцитам. В результате такого ответа образуются В-клетки памяти и долгоживущие плазматические клетки, секретирующие высокоафинные, строго специфичные к антигену иммуноглобулины. Напротив, В-лимфоциты маргинальной зоны селезенки и В1-клетки пролиферируют и секретируют иммуноглобулины в ответ на Т-независимые бактериальные полисахаридные и липополисахаридные антигены. Данный тип иммунного ответа характеризуется быстрым началом секреции низкоафинных полиреактивных иммуноглобулинов . Нейтрофильные гранулоциты могут служить индукторами для продукции этих антител благодаря способности перекрестно взаимодействовать с субпопуляцией B-лимфоцитов, расположенных в маргинальной зоне селезенки . Главной функцией популяции НГ, присутствующих в этой области, является поддержание гомеостаза В-лимфоцитов. Данная популяция НГ отличается от циркулирующих нейтрофилов фенотипически и функционально. Для них характерна высокая интенсивность экспрессии поверхностных молекул CD40L, CD86, CD95 и секреция иммуноре-гуляторных цитокинов, наиболее значимыми среди которых являются фактор, активирующий В-клетки (BAFF/BLyS) и лиганд, индуцирующий пролиферацию (APRIL). Цитоки-ны BAFF и APRIL относятся к семейству факторов некроза опухоли, основными их продуцентами являются клетки мие-лоидного ряда: макрофаги и ДК. Нейтрофилы при действии IFNa и G-CSF способны de novo синтезировать BAFF/BLyS и APRIL. Накопление и хранение данных молекул осуществляется в резервуарах комплекса Гольджи, высвобождение их из внутриклеточных хранилищ реализуется при действии про-воспалительных стимулов . BAFF/BLyS и APRIL могут находиться в свободной и мембраносвязанной формах. Их действие на клетку-мишень реализуется посредством связывания со специфическими поверхностными рецепторами TACI, BCMA и BAFF-R; последний в отличие от двух предыдущих, связывает только BAFF/BLyS. Тип поверхностных рецепторов на В-лимфоцитах зависит от степени их диффе-ренцировки: экспрессия BAFF-R характерна для наивных и В-клеток памяти, TACI и BCMA - для плазматических клеток. Взаимодействие данных рецепторов с лигандами приводит к усилению поверхностной экспрессии В-клеточного рецептора (BCR), пролиферации В-лимфоцитов, снижению их гибели за счет усиления экспрессии антиапоптотических факторов Bcl-2 и Bcl-XL . Показано участие BAFF/BLyS и APRIL в формировании Т-независимого иммунного ответа на небелковые антигены, в том числе на компоненты бактериальной стенки инкапсулированных микроорганизмов. При таком типе иммунного ответа формируются внефол-ликулярные герминальные центры и образуются В-клетки памяти. Они фенотипически отличаются от В-клеток памяти, образующихся при Т-зависимом ответе, имеют сходную с наивными В-лимфоцитами продолжительность жизни и чувствительность к полисахаридному антигену при его повторном введении . Под действием BAFF/BLyS и APRIL происходит Т-независимая дифференцировка В-лимфоцитов в плазматические клетки и переключение синтеза секрети-руемых ими иммуноглобулинов с IgM на IgG и IgA .

    Несмотря на большое значение BAFF/BLyS и APRIL в формировании иммунного ответа, содержание их в сыворотке крови здоровых доноров невелико. Усиление секреции данных иммунорегуляторных цитокинов НГ может приводить к нарушению толерантности иммунной системы и развитию системных и органоспецифических аутоиммунных заболеваний: системная красная волчанка, ревматоидный артрит, синдром Шегрена, системный склероз, аутоиммунный гепатит . Однако дефицит данных иммунорегуляторных

    цитокинов или рецепторов, ответственных за их связывание, приводит к В-лимфопении, патологическому снижению циркулирующих иммуноглобулинов классов G и M в сыворотке крови, неадекватному иммунному ответу на инфицирование и вакцинацию .

    Таким образом, нейтрофильные гранулоциты в последнее время признаются важной составляющей эффекторных и регуляторных цепей, контролирующих величину и качество иммунного ответа. Они обладают широким спектром механизмов, способствующих привлечению эффекторов адаптивного иммунитета к очагу воспаления, индукции их созревания, дифференцировки, пролиферации и активации. Поскольку нейтрофилы являются преобладающим типом клеток в поврежденных и воспаленных тканях, растворимые медиаторы, выделяемые ими, играют ключевую роль в формировании микроокружения и моделировании специфического антигензависимого ответа. Нейтрофилы опосредуют разнообразные иммунные функции, высвобождая широкий спектр преформированных и вновь синтезируемых медиаторов, включая цитокины и хемокины. НГ оказывают иммуно-регуляторное воздействие на дендритные клетки, NK- и Т- и В-лимфоциты, поддерживая их гомеостаз за счет секреции широкого спектра цитокинов. Нарушение функции НГ может приводить к неадекватной активации эффекторов адаптивного иммунного ответа и развитию патологических состояний, угрожающих жизни и здоровью пациентов.

    Исследование не имело спонсорской поддержки. Авторы заявляют об отсутствии конфликта интересов.

    литература

    1. Черешнев В.А., Шмагель К.В. Иммунология. М.: МАГИСТР-ПРЕСС; 2013.

    7. Долгушин И.И., Андреева Ю.С., Савочкина А.Ю. Нейтрофильные внеклеточные ловушки и методы оценки функционального статуса нейтрофилов. М.: Издательство РАМН; 2009.

    13. Пинегин Б.В., Карсонова М.И. Алармины - эндогенные активаторы воспаления и врожденного иммунитета. Иммунология. 2010; 31 (5): 246-55.

    14. Spadaro M., Cristiana C., Ceruti P., Varadhachary A., Forni G., Per-icle F. et al. Lactoferrin, a major defense protein of innate immu-

    nity, is a novel maturation factor for human dendritic cells. FASEB J. 2008; 22: 2747-57.

    19. Van Gisbergen K.P.J.M., Ludwig I.S., Geijtenbeek T.B.H., van Kooyk Y. Interactions of DC-SIGN with Mac-1 and CEACAM1 regulate contact between dendritic cells and neutrophils. FEBS Letters. 2005; 579: 6159-68.

    26. Gantt S., Gervassi A., Jaspan H., Horton H. The role of myeloid-derived suppressor cells in immune ontogeny. Frontiers in immunology. 2014; (5): 387. Available at http://www.ncbi.nlm.nih.gov/pmc/ articles/PMC4131407/pdffimmu-05-00387.pdf

    33. Crook K.R., Jin M., Weeks M.F., Rampersad R.R., Baldi R.M., Glekas A.S. et al. Myeloid-derived suppressor cells regulate T cell and B cell responses during autoimmune disease. J. Leukocyte Biol. 2015; 97 (3): 573-82.

    35. Scapini P., Carletto A., Nardelli B., Calzetti F., Roschke V., Merigo F. et al. Proinflammatory mediators elicit secretion of the intracellular

    B-lymphocyte stimulator pool (BLyS) that is stored in activated neutrophils: implications for inflammatory diseases. Blood. 2005;

    105 (2): 830-937.

    106 (33): 13 945-50.

    1. Chereshnev V.A., Shmagel" K.V. Immunology. . Moscow: MAGISTR-PRESS; 2013. (in Russian)

    2. Nauseef W.M., Borregaard N. Neutrophils at work. Nat. Immunol. 2014; 15 (7): 602-11.

    3. Mantovani A., Cassatella M.A., Costantini C. Jaillon S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat. Rev. Immunol. 2011; (11): 519-31.

    4. Rieber N., Gille C., Köstlin N., Schäfer I., Spring B., Ost M. et al. Neutrophilic myeloid-derived suppressor cells in cord blood modulate innate and adaptive immune responses. Clin. Exper. Immunol. 2013; 174 (1): 45-52.

    5. Chtanova T., Shaeffer M., Han S.-J., van Dooren G.G., Nollman M., Herzmark P. et al. Dynamics of neutrophil migration in lymph nodes during infection. Immunity. 2008; 29 (3): 487-96.

    6. Tecchio C., Micheletti A., Cassatella M.A. Neutrophil-derived cytokines: facts beyond expression. Frontiers in immunology. 2014; 5: 508. Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/ PMC4204637/pdf/fimmu-05-00508.pdf

    7. Dolgushin I.I., Andreeva Yu.S., Savochkina A.Yu. Neutrophil extracellular traps and methods for assessing of functional status of neutrophils. . Moscow: Izdatel"stvo RAMN; 2009. (in Russian)

    8. Kaplan M.J., Radic M. Neutrophil extracellular traps: double-edged swords of innate immunity. J. Immunol. 2012; (189): 2689-95.

    9. Tillack K., Breiden P., Martin R., Sospedra M.T lymphocyte priming by neutrophil extracellular traps links innate and adaptive immune responses. J. Immunol. 2012; 188 (7): 3150-9.

    10. Barrientos L., Bignon A., Gueguen C., de Chaisemartin L., Gorges R., Sandré C. et al. Neutrophil extracellular traps downregulate li-popolysaccharide-induced activation of monocyte-derived dendritic cells. J. Immunol. 2014; 193 (11): 5689-98.

    11. Adams S., O"Neill D.W., Bhardwaj N. Recent advances in dendritic cell biology. J. Clin. Immunol. 2005; 25 (2): 87-98.

    12. Zou G.M., Tam Y.K. Cytokines in the generation and maturation of dendritic cells: recent advances. Eur. Cytokine Network. 2002; 13 (2): 186-99.

    13. Pinegin B.V., Karsonova M.I. Alarmins - endogenous activators of inflammation and innate immunity. Immonologiya. 2010; 31 (5): 246-55. (in Russian)

    14. Spadaro M., Cristiana C., Ceruti P., Varadhachary A., Forni G., Per-icle F. et al. Lactoferrin, a major defense protein of innate immunity, is a novel maturation factor for human dendritic cells. FASEB J. 2008; 22: 2747-57.

    15. Kumar V., Sharma A. Neutrophils: Cinderella of innate immune system. Intern. Immunopharmacol. 2010; 10: 1325-34.

    16. Presicce P., Gianelli S., Taddeo A., Villa M.L., Bella S.D. Human de-fensins activate monocyte-derived dendritic cells, promote the production of proinflammatory cytokines, and up-regulate the surface expression of CD91. J. Leukocyte Biol. 2009; 86: 941-8.

    17. Odobasic D., Kitching A.R., Yang Y., O"Sullivan K.M., Muljadi R.C.M., Edgtton K.L. et al. Neutrophil myeloperoxidase regulates T-cell-driven tissue inflammation in mice by inhibiting dendritic cell function. Blood. 2013; 121 (20): 4195-04.

    18. Bachmann M., Kopf M., Marsland B.J. Chemokines: more than just road signs. Nat. Rev. Immunol. 2006; 6: 159-64.

    19. Van Gisbergen K.P.J.M., Ludwig I.S., Geijtenbeek T.B.H., van Kooyk Y. Interactions of DC-SIGN with Mac-1 and CEACAM1 reg-

    ulate contact between dendritic cells and neutrophils. FEBS Letters. 2005; 579: 6159-68.

    20. Müller I., Munder M., Kropf P., Hänsch G.M. Polymorphonuclear neutrophils and T lymphocytes: strange bedfellows or brothers in arms? Trend. Immunol. 2009; 30 (11): 522-30.

    21. Pelletier M., Maggi L., Micheletti A., Lazzeri E., Tamassia N., Costantini C. et al. Evidence for a cross-talk between human neutrophils and Th17 cells. Blood. 2010; 115 (2): 335-43.

    22. Abi Abdallah D., Egan C.E., Butcher B.A., Denkers E.Y. Mouse neutrophils are professional antigen-presenting cells programmed to instruct Th1 and Th17 T-cell differentiation. Intern. Immunol. 2011; 23 (5): 317-26.

    23. Movahedi K., Guilliams M., Van den Bossche J., Van den Bergh R., Gysemans C., Beschin A. et al. Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood. 2008; 111 (8): 4233-44.

    24. Hoechst B., Gamrekelashvili J., Manns M.P., Greten T.F., Korangy F. Plasticity of human Th17 cells and iTregs is orchestrated by different subsets of myeloid cells. Blood. 2011; 117 (24): 6532-41.

    25. Pillay J., Tak T., Kamp V.M., Koenderman L. Immune suppression by neutrophils and granulocytic myeloid-derived suppressor cells: similarities and differences. Cell. Molec. Life Sci. 2013; (70): 381327.

    26. Gantt S., Gervassi A., Jaspan H., Horton H. The role of myeloid-derived suppressor cells in immune ontogeny. Frontiers in immunology. 2014; (5): 387. Available at http://www.ncbi.nlm.nih. gov/pmc/articles/PMC4131407/pdf/fimmu-05-00387.pdf

    27. Oberlies J., Watzl C., Giese T., Luckner C., Kropf P., Müller I. et al. Regulation of NK cell function by human granulocyte arginase. J. Immunol. 2009; 182 (9): 5259-67.

    28. Kropf P., Baud D., Marshall S.E., Munder M., Mosley A., Fuentes J.M. et al. Arginase activity mediates reversible T cell hyporespon-siveness in human pregnancy. Eur. J. Immunol. 2007; 37 (4): 93545.

    29. Köstlin N., Kugel H., Spring B., Leiber A., Marme A., Henes M. et al. Granulocytic myeloid derived suppressor cells expand in human pregnancy and modulate T-cell responses. Eur. J. Immunol. 2014; 44: 2582-91.

    30. Gervassi A., Lejarcegui N., Dross S., Jacobson A., Itaya G., Kidzeru E. et al. Myeloid derived suppressor cells are present at high frequency in neonates and suppress in vitro T cell responses. PLOS ONE. 2014; 9 (9): e107816. Available at http://journals.plos.org/plosone/ article?id=10.1371/journal.pone.0107816

    31. Wu T., Zhao Y., Zhao Y. The roles of myeloid-derived suppressor cells in transplantation. Exp. Rev. Clin. Immunol. 2014; 10 (10): 1385-94.

    32. Serafini P. Myeloid derived suppressor cells in physiological and pathological conditions: the good, the bad, and the ugly. Immunologic Research. 2013; 57 (1-3): 172-84.

    33. Crook K.R., Jin M., Weeks M.F., Rampersad R.R., Baldi R.M., Gle-kas A.S. et al. Myeloid-derived suppressor cells regulate T cell and B cell responses during autoimmune disease. J. Leukocyte Biol. 2015; 97 (3): 573-82.

    34. Puga I., Cols M., Barra C.M., He B., Cassis L., Gentile M. et al. B cell-helper neutrophils stimulate the diversification and production of immunoglobulin in the marginal zone of the spleen. Nat. Immunol. 2011; 13 (2): 170-80.

    35. Scapini P., Carletto A., Nardelli B., Calzetti F., Roschke V., Merigo F. et al. Proinflammatory mediators elicit secretion of the intracellular B-lymphocyte stimulator pool (BLyS) that is stored in activated neutrophils: implications for inflammatory diseases. Blood. 2005;

    105 (2): 830-937.

    36. Defrance T., Taillardet M., Genestier L. T cell-independent B cell memory. Curr. Opin. Immunol. 2011; 23: 330-6.

    37. Castigli E., Wilson S.A., Scott S., Dedeoglu F., Xu S., Lam K.-P. et al. TACI and BAFF-R mediate isotype switching in B cells. J. Exper. Med. 2005; 201 (1): 35-9.

    38. Moisini I., Davidson A. BAFF: a local and systemic target in autoimmune diseases. Clin. Exper. Immunol. 2009; 158: 155-63.

    39. Warnatz K., Salzer U., Rizzi M., Fischer B., Gutenberger S., Böhm J. et al. B-cell activating factor receptor deficiency is associated with an adult-onset antibody deficiency syndrome in humans. PNAS. 2009;