Электрическая энергия. Что такое АЭС? Кпд атомной

Массовая энергонапряженность

Объемная энергонапряженность.

2 Тепловые схемы АЭС

Основное технологическое оборудование

2.1.Типы атомных станций

В настоящее время практически все стации работают как конденсационные, т. е. в качестве рабочей среды используется водяной пар.

Атомные электрические станции АЭС – предназначены для коммерческого производства электрической энергии, но на практике они в той или иной мере производят отпуск тепловой энергии сторонним организациям, но доля его намного меньше затрат на получение электроэнергии. АЭС предназначенные не только для производства электроэнергии, но и для выработки тепла называют АТЭЦ (атомная тепловая электроцентраль), классический пример – Билибинская. Кроме того, существуют ядерные энергетические установки, предназначенные только для отпуска тепловой энергии – АСТ (атомные станции теплоснабжения).

В системе любой станции различают теплоноситель и рабочее тело. Для АЭС рабочим телом является среда, с помощью которой тепловая энергия переходит в механическую (в большинстве АЭС рабочим телом является водяной пар). Однако с точки зрения термодинамики существенно выгоднее использовать в качестве рабочего тела газовые среды.

Назначение теплоносителя – отводить тепло при освобождении внутриядерной энергии. При этом необходим замкнутый контур теплоносителя по следующим причинам:

· теплоноситель активируется;

· требуется высокая чистота теплоносителя, поскольку любые отложения на поверхности ТВЭЛ приводят к существенному увеличению температуры оболочек твэл. В этой связи основная классификация АЭС зависит от числа контуров.

2.1.1 Одноконтурные АЭС

В общем случае, для любой ядерно-энергетической установки можно выделить контур теплоносителя и контур рабочего тела. Если два этих контура совмещены, то такая АЭС называется одноконтурной. В активной зоне ядерного реактора происходит парообразование, но вода только частично превращается в пар, что обусловлено нейтронной физикой. Пар и вода разделяются либо в самом корпусе реактора, либо в барабан сепараторе, далее пар поступает на турбину, конденсируется и возвращается в реактор. Приведем упрощенную схему такой одноконтурной АЭС.

Рис.2.1. Упрощенная схема одноконтурной АЭС.

1 – реактор с кипением и внутри корпусным разделением паровой и жидкой фаз; 2 – паровая турбина; 3 – электрический генератор; 4 – конденсатор (чтобы увеличить перепад давления на турбине давление в конденсаторе должно быть меньше атмосферного); 5 – конденсатный насос; 6 – циркуляционный насос.

В корпусе реактора происходит разделение смеси, барабан-сепаратор отсутствует. Внутренняя энергия теплоносителя, запасенная в реакторе, переходит в механическую энергию вращения вала турбины, (рабочее тело существенно увеличивает свой объем). Все оборудование контура подвержено радиоактивному загрязнению, что усложняет как эксплуатацию, так и проведение ремонтных работ .

По одноконтурной схеме работает реактор РБМК (канальный реактор)

Рис.2.2. Тепловая схема реактора РБМК.

1- технологический канал реактора с кипящим теплоносителем; 2 – паровая турбина; 3 – генератор; 4 – конденсатор; 5 – питательный насос;6 – циркуляционный насос;7 – барабан-сепаратор.

Если контур ТН и рабочее тело разделены, то такая АЭС называется двухконтурной.

Если парообразование в первом контуре отсутствует, необходим 2 элемент, который служит устройством для компенсации объема расширяющегося рабочего тела, находящегося в жидкой фазе. С точки зрения радиационного облучения персонала второй контур можно считать безопасным.

Если в первом и во втором контуре в качестве теплоносителя используется легкая вода, то необходимо удовлетворить следующие условия.

Температура теплоносителя в первом контуре выше температуры рабочего тела второго контура Т1> Т2 , и соответственно давление Р1>Р2 . Так для водо- водяного реактора ВВЭР-1000 эти параметры примерно составляют–Т1 =320 , Т2 =289 ; Р1 =16 МПа, Р2 =7 МПа, чем обеспечиваются условия для реализации активного парообразования во втором контуре при отсутствии такового в первом.

С точки зрения капитальных затрат одноконтурные и двухконтурные реакторы одинаковой мощности имеют примерно паритет. Это объясняется необходимостью изготавливать технологический контур в первом варианте из дорогостоящих коррозионно-стойких материалов. Однако себестоимость электрической энергии для одноконтурной АЭС оказывается несколько ниже чем для двухконтурной.

Рис. 2.3. Тепловая схема двухконтурной АЭС.

1 – реактор с не кипящим теплоносителем; 2 – компенсатор объема; 3 – парогенератор (ПГ), где энергия теплоносителя первого контура превращается в энергию парообразования во втором контуре (в первом контуре теплоноситель, во втором контуре – рабочее тело); 4 – паровая турбина; 5 – генератор; 6 – конденсатор; 7 – конденсатный насос; 8 – циркуляционный насос; I к. – первый контур; II к. – второй контур.

Существует неполная двухконтурная схема (1 – 2 блоки БАЭС).

Рис. 2.4 Тепловая схема 1-го и 2-го блоков БАЭС.

1 – реактор с кипящим теплоносителем; 2 – паровая турбина; 3 – генератор; 4 – конденсатор; 5 – конденсаторный насос; 6 – циркуляционный насос; 7 – парогенератор (ПГ); 8 – барабан-сепаратор; 9 - пароперегревательный канал (ППК); 10 – испарительный канал (ИК).

Существенное отличие данной схемы от ниже рассмотренной заключается в том, что пар второго контура (как же и теплоноситель первого контура) направляется в пароперегревательные каналы, в которых реализуются условия ППК, в ИК вода кипит, в барабан сепараторе – разделяется. Трехконтурная АЭС. БН-– аналогично.

2.2.Основное технологическое оборудование.

По отдельным стадиям технологического процесса все оборудование подразделяют на реакторную, парогенераторную, паротурбинную, конденсатную установки, питательный тракт.

Рассмотрим упрощенную схему двухконтурной АЭС. Как для одноконтурной, так и для двухконтурной АЭС с водным теплоносителем начальный перегрев пара весьма незначителен. Следовательно, в турбину поступает пар практически на линии насыщения, где при расширении и снижении температуры он быстро увлажняется. Во избежание интенсивного износа лопаточного аппарата турбины. предельное значение допустимой влажности пара в турбине составляет 10÷12%. С этой целью турбину разделяют на цилиндры высокого, среднего и низкого давления, между которыми устанавливаются устройства, где либо от паровой фазы отделяется жидкая фаза – сепараторы, либо подводом тепла переводят жидкость в пар - подогреватели.

Рис.2.5. Тепловая схема ЯЭУ.

1-реакторная установка; 2-компенсатор объема; 3-парогенератор; 4-цилиндр турбины высокого давления; 5--цилиндр турбины низкого давления; 6-электрогенератор; 7-сепаратор пара; 8-конденсатор; 9-конденсационный насос; 10-конденсационная очистка (фильтр); 11-подогреватели низкого давления (ПНД); 12-диаэраторная колонка; 13-диаэраторный бак; 14-питательный насос; 15-подогреватели высокого давления (ПВД); 16-сетевой подогреватель; 17- ГЦН; 18-сетевой насос.

Таким образом, основными технологическими звеньями энергоблока атомной установки являются: реактор, парогенератор, турбина-генератор, конденсатная установка, диэраторная установка, питательный тракт (насосы, баки), ПВД и ПНД, питательные конденсатные насосы, ГЦН.

2.3 Организация термодинамического цикла.

Регенерация. КПД.

Применение законов термодинамики для реактора позволяет записать:

(2.1)

Разнообразие существующих типов ядерных реакторов, теплоносителей и энергетического оборудования обуславливает разнообразие термодинамических циклов - совокупности взаимных рабочих процессов, происходящих в энергетической системе в виде взаимных контуров АЭС. Термодинамический цикл влияет на экономичность АЭС, обуславливает выбор схемы и основных параметров энергетической установки. Основным показателем термодинамического цикла служит термический КПД (или КПД цикла Ренкина) – это отношение теоретической работы цикла к количеству теплоты, подведенной к рабочему телу.

Теоретическая работа цикла:

где https://pandia.ru/text/78/252/images/image062_12.gif" width="36" height="27 src="> - теоретическая работа расширения без учета потерь; - коэффициент, учитывающий необратимость процесса расширения; аналогично

. (2.3)

Рис.2.6. Схема простейшего термодинамического цикла в TS -координатах.

Из этой диаграммы следует:

1 - начало процесса сжатия рабочего тела

1-2 – адиабатическое сжатие рабочего тела с ростом внутренней энергии;

2-3 -отбор тепловой энергии от нагревателя, площадь фигуры 23S2S1 – пропорциональная подводимому теплу;

3-4 – адиабатическое расширение рабочего тела за счет уменьшения внутренней энергии;

4-1 -отвод тепловой энергии в холодильнике, площадь фигуры 14S2S1 – пропорциональная отводимому теплу Q2 ,

Lцт - теоретическая работа цикла.

(2.4)

Отсюда следует

(2.5)

Или в сокращенном виде

(2.6)

Рис.2.7. Схема простейшей паротурбинной установки.

1-парогенератор; 2- турбогенератор; 3- конденсатор; 4- главный циркуляционный насос.

Для турбины, работающей на насыщенном паре КПД цикла Карно можно представить в виде

(2.7)

где iк, iпв – энтальпия воды на выходе из конденсатора и после насоса соответственно, кДж/кг; i0 , - энтальпия пара перед турбиной и на входе в конденсатор при адиабатическом расширении в турбине, кДж/кг.

Выражение (2.7) можно представить в виде

. (2.8)

На Рис.2.8 изображен рабочий процесс расширения пара в турбине на T-S диаграмме, из которой можно отметить, что разность i0 - в уравнении (2.8) представляет собой располагаемый (адиабатный) перепад энтальпии в турбине (работа расширения). Разность энтальпий iпв-ik в рассматриваемых условиях выражает затраты энергии в насосе, отнесенные к 1 кг воды при ее адиабатическом сжатии (работа сжатия). Если учесть неадиабатичность расширения пара в турбине, то энтальпия пара на выходе из турбины возрастет и примет значение , что на Рис. 2.12 соответствует точке 6. На это увеличение энтальпии возрастет количество тепла, передаваемое на 1 кг пара охлаждающей воде в конденсаторе.

В первом приближении вторым слагаемым в числиможно пренебречь, так как в реальных установках затраты на сжатие водного теплоносителя составляют ~1% от работы расширения. Тогда КПД цикла Ренкина можно записать в упрощенном виде:

где i1 - i2 - перепад энтальпий на турбине, i3 –удельная энтальпия воды на выходе из конденсатора.

Рис.2.8. Термодинамический цикл Ренкина для простейшей паротурбинной установки при работе на насыщенном паре.

Из приведенной диаграммы Рис. 2.8 видно, что термический КПД определяют две адиабаты и две изобары, в то же время КПД цикла Карно зависит от двух адиабат и двух изотерм. КПД цикла Карно всегда больше КПД термического цикла так как

Важно отметить, что величина термического КПД для современных энергетических блоков составляет 30-40 %, или, другими словами, площади фигур 123451 и S112345S4 на Рис.2.8 в реальном масштабе имеют точно такое соотношение.

Способы повышения термического КПД.

· Повышать давление, следовательно, парообразование будет реализовываться при больших температурах.

· В конденсатор подавать более холодную воду для более сильного охлаждения рабочего тела.

2.4 Выбор теплофизических параметров для получения максимального термического КПД

Рассмотрим влияние теплофизических параметров рабочего тела на входе в турбину (точка 4 Рис.2.8). Из справочных данных можно построить графические зависимости удельной энтальпии как функции удельной энтропии при разных давлениях теплоносителя в точке 4 термодинамического цикла, который будет иметь следующий вид:

Рис.2.9. Графический вид зависимости теплосодержания от энтропии.

Давление в конденсаторе; https://pandia.ru/text/78/252/images/image080_13.gif" width="23 height=24" height="24">.gif" width="29" height="31 src=">.jpg" width="584" height="752">

Рис.2.10. Схема организации регенеративного цикла.

, , , – доли пара в отборах соответствующих цилиндров; https://pandia.ru/text/78/252/images/image089_12.gif" width="13" height="24 src=">.gif" width="20" height="24 src="> - доля пара, попадающая в конденсатор; 8, 9, 10 – три теплообменника для подогрева рабочего тела. 1–7?

Рис.2.11. Теплофизика ЯЭУ с организацией регенерации тепла.

Анализируя график зависимости Т(S) можно видеть, что в реальном масштабе переменных Т и S площадь фигуры 5’4C4’5’ будет соответствовать уменьшению числителя в определении термического КПД, однако и знаменатель этой формулы уменьшится на величину существенно большей площади фигуры 5”5"4"4”5” . Из рисунка видно, что КПД цикла Ренкина при организации регенеративного отбора будет значительно большим, чем при работе в безотборном режиме. Но в данной схеме необходимо всегда собдюдать условие, площадь фигуры S34’4”5”5’3 (количество тепла всех отборов) должна быть меньше площади фигуры (отбор тепла для нагрева рабочего тела до насыщения), так как в противном случае в теплообменниках регенеративных подогревателей будут идти процессы кипения, а значит, мы лишимся отбора тепла за счет теплоты парообразования в самом реакторе или парогенераторе.

В этом варианте термический КПД может быть представлен в следующей форме:

(2.11)

Где https://pandia.ru/text/78/252/images/image095_11.gif" width="77 height=45" height="45">, можно записать

Следовательно, всегда выполняется условие:

При бесконечном числе отборов КПД Карно и термический КПД равны, что является мощным способом увеличения реального КПД. Использование регенеративных подогревателей ведет к увеличению температуры питательной воды на входе в парогенератор. Термический КПД определяется интегралом от средней температуры при нагреве теплоносителя. Необходимо найти оптимальное соотношение числителя и знаменателя термического КПД для любого числа отборов. Исходя из паспортных данных турбины, задаваясь температурой и давлением теплоносителя на выходах из регенеративных подогревателей можно по справочнику найти энтальпии теплоносителя в данных условиях. Составляя уравнения материального и теплового баланса для сборника конденсата можно рассчитать КПД такого устройства.

Рис. 2.12. График зависимости роста КПД от температуры питательной воды и числа отборов.

При бесконечном числе отборов нет максимума на зависимости термического КПД от температуры питательной воды. Анализ показывает, что организация оптимального трехотборного режима увеличивает термический КПД более чем на 10%, что в обычных условиях потребовало бы увеличения давления в конденсаторе с 30 до 60 атм. При температуре Т =3500С, что в существенной мере упрощает проблему прочности реактора.

2.6 Внутренний КПД турбины.

Термический КПД оценивает эффективность идеального преобразования (адиабатного) перепада энтальпии. В реальных условиях рабочего процесса за счет трения пара, в проточной части турбины, увеличивается энтропию на выходе из турбины на величину S6-S1 (точка 6 на Рис.2.8). Очевидно, что на такое же значение возрастет количество тепла, передаваемое охлаждающей воде, рассчитанные на 1 кг пара. Важно отметить, что в данном случае мы имеем ситуацию уменьшению термического КПД за счет существенного увеличения сброса тепла в конденсатор при незначительном росте его полезного использования. Отношение адиабатного перепада энтальпии в идеальной турбине к реальному перепаду (характеризует совершенство проточной ее части) называют внутренним относительным КПД турбины, который определяют следующим образом:

. (2.13)

Обычно MsoFooter" style="border-collapse: collapse;border:none">

2.7 Коэффициент полезного действия АЭС

Мы рассматривали , который характеризует механическое преобразование тепловой энергии в электрическую, однако, для АЭС больший интерес представляет общий КПД «брутто» и «чистый» КПД – «нетто». «Брутто» характеризует совершенство преобразования ядерной энергетической установкой энергии реактора в электрическую энергию. «Нетто» же учитывает расходы электрической энергии на собственные нужды и оценивает теплотехническую и экономическую надежность станции.

Как первый закон термодинамики позволяет организовать учет энергии в рамках технологического процесса или установки?

В частности, первый закон термодинамики утверждает, что энергия не может создаваться или уничтожаться, но может лишь переходить из одной формы в другую. Это позволяет организовывать учет энергии в рамках технологического процесса или установки, рассчитывать КПД процессов и т.п.

Как второй закон термодинамики определяет потери тепла или энергии?

Согласно второму закону термодинамики, никакой процесс преобразования энергии не допускает совершения полезной работы, равной 100% затраченной энергии. Неизбежно существуют потери в форме рассеяния низкопотенциального тепла или энергии, и, как следствие, КПД никакого процесса или машины не может достигать 100%.

Чем обусловлена оптимизация расхода пара на деаэратор?

В результате деаэрации концентрации растворенного кислорода и диоксида углерода снижаются до уровня, безопасного с точки зрения коррозии. Для предотвращения коррозии в большинстве котлов высокого давления (> 13,79 бар (м)) концентрация кислорода не должна превышать 5 част./млрд. (частей на миллиард).

Пар, подаваемый в деаэратор, обеспечивает нагрев смеси возвратного конденсата и подпиточной воды до температуры насыщения, а также физическое действие (барботирование), приводящее к выделению растворенных газов. После использования большая часть пара конденсируется, однако незначительная его доля (как правило, от 5 до 14 %) выбрасывается вместе с газами в составе выпара. Потребности деаэратора в паре должны быть проанализированы и оценены при рассмотрении любых планов реконструкции паровых систем, а также мер по возврату конденсата и утилизации тепловой энергии.

(Как правило, при проектировании деаэраторов рассчитывается расход пара, необходимый для подогрева воды, а затем проектировщики при необходимости обеспечивают достаточность расхода и для барботажа. При высокой степени возврата конденсата (>80 %) и его высоком давлении по сравнению с давлением в деаэраторе требуется лишь небольшое количество греющего пара, и могут быть приняты меры по конденсации избыточного барботажного пара.)

Какие параметры пара называют суперсверхкритическими?

300 атмосфер при температуре выше 580 градусов.

Низкие <1,3Мпа и 200-330С, средние 5Мпа и 420-450С, высокие 9Мпа и 480-535С, докритические 13Мпа 540С, критические 16Мпа и 540С, сверхкритические 24Мпа и 540С, суперсверхкритические >30Мпа и >650С.

Назовите показатели, которыми характеризуется экономичность работы ТЭЦ.

ТЭЦ отпускает два вида энергии - электрическую и тепловую. По­этому для оценки качества работы ТЭЦ необходимо иметь также два показателя.

Коэффициент полезного использования тепла топлива. Если у конденсационных ТЭС России он не превышает 40 %, то для ТЭЦ он может достигать 85 % (а 15 % составляют потери с уходящими газами энергетических и водогрейных котлов, с конденсацией той части пара, которая проходит в конденсатор, собственные нужды).

Выработка электроэнергии на тепловом потреблении  = N э /Q т. Ясно, что если, например, две ТЭЦ отпускают одинаковое количество тепла Q т и имеют одинаковый коэффициент использования топлива, то из них лучше та, которая отпускает больше электроэнергии.

Эти два показателя полностью характеризуют экономичность работы ТЭЦ.

На практике и в отчетной документации ТЭЦ используют два других эквивалентных упомянутым выше показателям: привычный нам удельный расход условного топлива на производство электроэнергии b э в г/(кВт·ч) и удельный расход условного топлива на производство 1 Гкал тепла b т в кг/Гкал. Для ТЭЦ b т = 150-170 кг/Гкал. Эти величины подсчитываются в соответствии с нормативными документами по распределению затраченного топлива на производство электроэнергии и тепла.

Какие из нетрадиционных и возобновляемых энергетических ресурсов наиболее перспективны для использования в энергетике.

Ветроэнергетика, биотопливо, гелиоэнергетика, приливные и волновые ГЭС, геотермальная энергетика, использование тепловых насосов.

Укажите составляющие суммарной экономии энергии при глубокой утилизации теплоты уходящих газов.

Метод глубокой утилизации теплоты дымовых газов позволяет увеличить КПД топливопотребляющей установки на 2-3%, что соответствует снижению расхода топлива на 4-5 кг у.т. на 1 Гкал выработанного тепла.

Перечислите основные энергосберегающие мероприятия, рекомендуемые для котельных установок в целях уменьшения потерь теплоты с уходящими газами.

· поддержание оптимального коэффициента избытка воздуха в топке котла а т и снижение присосов воздуха по его тракту.

· поддержание чистоты наружных и внутренних поверхностей нагрева, что позволяет увеличить коэффициент теплопередачи от дымовых газов к воде;

· увеличение площадей хвостовых поверхностей нагрева;

· поддержание в барабане парового котла номинального давления, обеспечивающего расчетную степень охлаждения газов в хвостовых поверхностях нагрева;

· поддержание расчетной температуры питательной воды, определяющей температуру уходящих после экономайзера дымовых газов;

· перевод котлов с твердого или жидкого топлива на природный газ и др.

Изменение температуры уходящих газов на 20 °С приводит к изменению КПД котла на 1 %

Каким образом температура окружающей среды влияет на КПД паротурбинной установки?

Увеличение температуры холодного воздуха ведет к снижению КПД, так как температура дымовых газов будет повышаться а как следствие будет увеличиваться q2.

Как влияет коэффициент избытка воздуха на КПД котла?

Увеличение коэффициента избытка воздуха приведет к увеличению потерь с уходящими газами. Чрезмерное уменьшение коэффициента избытка воздуха приведет к появлению зон с недостатком кислорода. В таких зонах не происходит полного окисления элементов топлива и образуется сажа.

Почему перевод котла на газовое топливо приводит к росту его КПД (брутто) и КПД (нетто)?

При переводе котла на сжигание газа эффект достигается за счет снижения потребления условного топлива (повышение КПД котла, снижение расхода тепла на собственные нужды).

Поясните, каким образом определяется рациональное распределение нагрузки между отдельными котлами в котельных установках?

Из условий наибольшей экономичности котельной установки вытекает требование такого распределения нагрузки между котлами, чтобы относительные приросты расхода топлива, приходящиеся на увеличение нагрузки котла (например, в 1 г/ч), были бы одинаковые.

Факторы, влияющие на величину потери тепла с уходящими газами

Основным определяющим фактором, влияющим на потерю теплоты уходящими газами, является их температура. Для снижения Т ух увеличивают площадь теплоиспользующих поверхностей нагрева - воздухоподогревателей и экономайзеров.

Величина Т ух влияет не только на КПД агрегата, но и на капитальные затраты, необходимые для установки воздухоподогревателей или экономайзеров.

Чем определено повышение потери теплоты с механическим недожогом для низкореакционных топлив.

Повышение потери у низкореакционных топлив определяются поздним воспламенением коксовых частиц и затянутым горением в кинетической области, в связи с этим низкореакционные топлива весьма чувствительны к режиму эксплуатации.

Типы паровых турбин

Конденсационная (К), теплофикационная с отопительным отбором пара (Т), теплофикационная с производственным отбором пара (П), теплофикационная с производственным и отопительным отбором пара (Пт), с противодавлением (Р). Разновидности: ПР, ТР, ТК, КТ.

Условное топливо

Это топливо, имеющее теплоту сгорания 7000ккал/кг (29,3МДж/кг). Используется в повседневной практике как показатель эффективности работы котельного агрегата.

Способы увеличения КПД ТЭС

Основные типы деаэраторов

Деаэратор - техническое устройство, реализующее процесс деаэрации некоторой жидкости, то есть её очистки от присутствующих в ней нежелательных газовых примесей. На многих электрических станциях и котельных также играет роль бака запаса питательной воды для паровых котлов или подпитки теплосети.

В зависимости от предназначения применяют деаэраторы:

· для питательной воды парогенераторов;

· для подпиточной воды и обратного конденсата;

· для подпиточной воды тепловых сетей.

В зависимости от давления пара бывают устройства:

· повышенного давления (давление пара от 0,6 до 0,8 МПа); Деаэраторы ДП имеют больш́ую толщину стенок, зато их применение в схеме ТЭС позволяет сократить количество металлоёмких ПВД и использовать выпар как дешёвую рабочую среду для пароструйных эжекторов конденсатора (эжектор-устройство, в котором происходит передача кинетической энергии от одной среды, движущейся с большей скоростью, к другой); деаэрационная приставка конденсатора, в свою очередь, является вакуумным деаэратором.

· атмосферные (0,12 МПа). Из атмосферных деаэраторов выпар удаляется под действием небольшого избытка давления над атмосферным.

· вакуумные (давление пара от 7,5 до 50 кПа). Вакуумные деаэраторы могут работать в условиях, когда на котельной нет пара, однако им требуется специальное устройство для отсоса выпара (эжектор)

В зависимости от конструкции:

· струйные; (В деаэраторах струйного типа вода проходит активную зону в виде струй, на которые она может быть разбита 5-10 дырчатыми тарелками (кольцевые с центральным проходом пара чередуются с круговыми меньшего диаметра, обтекаемыми по краю). Струйные деаэрационные устройства имеют простую конструкцию и малое паровое сопротивление, но интенсивность деаэрации воды сравнительно низка.)

· струйно-барботажные; (В струйно-барботажных деаэраторах деаэрация происходит в основном, под действием барботажа. В уменьшенной колонке деаэратора (две тарелки) происходит подогрев воды и деаэрация на 85-90%. Последняя заканчивается только в результате барботажа. При барботаже используется эффект вскипания перегретой воды при подъеме ее из нижней части бака к поверхности (разность давлений 0,2-0,25 кгс/см2).)

  • пленочного типа;

1) пленочного типа с неупорядоченной насадкой;

2) пленочные с упорядоченной насадкой.

(В первом случае поверхность контакта пара с водой создается в процессе их движения, а во втором - поверхность контакта фиксированная.)

(В деаэраторных колонках пленочного типа деаэрируемая вода разбивается на тонкие пленки, стекая вниз по поверхности насадки. Используется упорядоченная или неупорядоченная насадка. Упорядоченная насадка выполняется из вертикальных, наклонных или зигзагообразных листов, концентрических цилиндров, укладываемых правильными рядами колец или других элементов, обеспечивающих непрерывное направленное движение воды.)

Типы питательных насосов

Питательный насос- насос для подачи питательной воды в паровой котел. Питательные насосы бывают поршневыми и центробежными с электрич. и паровым приводами, а также струйными - инжекторами.

В отопит, установках используют поршневые насосы для питания котлов водой при темпре до 100 С с рабочим давлением 0,4- 2,0 МПа и произ-стыо 2-б т/ч. Однако из-за недостатков (низкая экономичность, высокий расход пара, неравномерность подачи воды, чувствительность к механич. примесям и загрязнениям) их используют как резервные.

В качестве осн. применяют центробежные с электроприводом. Их преимущества: экономичность и надежность работы, удобство регулирования произвести, простота обслуживания и др.

Инжекторы (пазоструйные устройства) используют для питания водой мелких отопит, котельных. Для их надежной работы темп-pa питат. воды должна быть не выше 40 С и высота подачи - не более 2 м. Расход пара инжекторами составляет 7-9% кол-ва подаваемой воды. П.н. - важный элемент котельной установки, т.к. даже кратковремен. прекращение подачи воды может привести к аварии котла. Вследствие этого питательный насос, как и др. насосы тепловой схемы, оборудуют устройством автоматического включения резерва (АВР). Произ-сть, число, типы питательных насосов и их приводов для производств.-отопит, и энер-гетич. котельных регламентированы правилами технич. эксплуатации электростанций.

В каких диапазонах варьируется КПД производства электроэнергии на различных ТЭС?

Коэффициент полезного действия ТЭС достигает 40%. Большая часть энергии теряется вместе с горячим отработанным паром. Тепловые электростанции - так называемые теплоэлектроцентрали (ТЭЦ) - позволяют значительную часть энергии отработанного пара использовать на промышленных предприятиях и для бытовых нужд (для отопления и горячего водоснабжения). В результате КПД ТЭЦ достигает 60-70%, АЭС- до 80 %.

ТЭС 33-35% (уголь, газ, мазут. Торф); ТЭЦ 35-38% (уголь, газ, мазут, торф); ГРЭС 36-44% (уголь, газ, мазут, торф); ПГУ 50-65% (газ); ГТЭС (газотурбинные ЭС) 30-35% (газ); ГПЭС (газопоршневые ЭС) 40-46% (газ, дизтопливо).

Атомная электростанция по своей сути ничем не отличается от ТЭС кроме как топливом. Для выработки используется ядерное топливо природного или искусственного происхождения. К природным можно отнести уран, добытый в глубоких шахтах естественным путем, а искусственным можно считать вторичное сырье, прошедшее специальную обработку. С точки зрения химии искусственным топливом может быть металлическая или карбидная, оксидная или нитритная, а возможно и смешанное.

Электрическая мощность атомной электростанции - формула

Так как наше государство является одним из шести стран, где добывается львиная доля урана, то и основным топливом для является данный элемент.

Принцип работы

После трагических событий на средства массовой информации активно распространялись слухи и внушали в подсознание граждан, будто любая электростанция, производящие энергию на атомном топливе рано или поздно приведет к взрыву и негативное воздействие на людей и окружающую среду. Самая высокая вырабатывается на Балаковской установке. Но многие ученые утверждают, что вероятность взрыва или любого другого вреда от Балаковской АЭС не больше чем от любого промышленного, производственного предприятия. Всё дело в том, что для выработки энергии необходимо тепло, которое получают в результате цепного ряда действия и реакции деление на атомы одного из вариантов ядерного топлива, чаще всего это Уран. Этот процесс считается основным рабочим на всей территории любой АЭС.

Типы реактивных двигателей

Все установки делятся на категории по используемому топливу для выработки энергии, по теплоносителю, замедлители, которая контролирует весь процесс проведения реакции. Для того чтобы показывать высокий уровень результативности, многие реакторы используют облегченную воду в виде Пара которая воздействует двумя разными способами.

Первый способ это подача теплого пара непосредственно в активной зоне. Уровень температуры такого энергоблока очень высок, в народе его называют кипящим блоком. Второй зависит от графитных материалов, с помощью которых вырабатывается газ, позволяющий отслеживать всю работу системы. На таком типе работы существует Балаковская станция.

История развития и строительства АЭС

Первым вариантом использования ядерного топлива для выработки энергии был осуществлен в лаборатории на территории Айдахо (вначале 1950-х, в США). Прототип выдавал мощность, которой хватало для работы четырёх ламп накаливания по 200Вт каждая. В ходе разработок, такая система смогла уже целое сооружение в несколько этажей. Пройдя сотни исследований и реакций, только в 1955 году такой реактор был подключен к целой сети, прославив город Арко по всему миру, как место расположения первого на свете реактора на ядерной энергии.

Но в то время, пока американцы проводили опыты и наблюдения, русские запустили на год раньше в 1954 году в городе Обнинске (СССР, Калужская область) атомной электростанции с мощностью в несколько раз большей. Именно с этого момента началось активное производства атомной энергетики россиян. Далее, спустя пару-тройку лет стали возводиться атомные станции как грибы, в течение следующих 10−15 лет советские граждане возвели 17 атомных станций.

Энергетические выработки ядерной системы

Какова электрическая мощность атомной электростанции ? На этот вопрос невозможно ответить однозначно, так как все АЭС в России имеют самые различные мощности от 48 мВт и до 4000 мВт. Последняя цифра достигается, в случае если атомная электростанция мощностью 1000 имеет по 4 реактора. Основное их количество работает на водяной системе, именуемой ВВЭР. Такой тип реактора самый распространенный в нашей стране (всего насчитывает порядка 18 единиц), из них с тысячной цифрой - 12 единиц. Не исключается также использование и кипящих систем канального типа. Таких реакторов в РФ всего 15.

Вода применима не только для энергетической или гетерогенной системы работы реактора, но и для водо-водяной или корпусной. Также, с помощью воды реактор во взаимодействии с тепловыми нейронами может быть применим как отражатель и замедлитель, а возможно и теплоноситель нейтронов.

Кстати, атомная электростанция мощностью 1000 имеет (кпд 20), с каждым реактором по 1000 мВт, является наиболее распространенной моделью не только в нашем государстве, но и в мире. Такого типа сооружений 7% в мире от общего количества.

Разновидности дизельных ЭС

Дизельная электростанция с мощностью необходимой под индивидуальные нужды является отличным вариантом для обеспечения электричеством отдаленного селения или конкретного дома от линий электропередач. Нередко сельские жители и владельцы кафе, магазинов предпочитают иметь дома и по необходимости устанавливать дизельный агрегат для выработки света на случай экстренных условий или общего отключения линейного электричества.

Приобретая такое изделие за не малые деньги, необходимо заранее определиться:

  • нужна подстанция передвижная или стационарная;
  • каков КПД (коэффициент полезного действия) необходим для подключения всего самого необходимого;
  • какой расход топлива и достаточно ли он экономно употребляется системой;
  • сверить комплектацию.

Средняя мощность для типичного дома без электроотопления и чрезмерного потребления составляет 5 кВт, а вот если необходимостей гораздо больше - то обеспечит электрическое отопление в зимний период.

Разновидности ЭС и их приоритеты

Установка преимущественно экономична (относительно ). А вот потребляет сырья для работы почти в 2 раза меньше, но выдает КПД станция, равнозначный по объему, как для дизельной, так и для бензиновой системы.

Наиболее экономичным способом организовать освещение в доме - это установить мощностью от 2 кВт и выше. Стоит заметить, что основой работы является яркое солнце, попадающее внутрь. Солнечная система, вполне может обеспечить собственные жилые помещения светом только в случае яркого солнечного дня.

Каковы масштабы выработки электроэнергии в РФ

Российская Федерация уверенно движется вперед по развитию своей энергетики, к тому же это позволяет делать наличие продуктивно работающих урановых шахт. Ввиду активного роста, все энергетические системы объединены в географические группы. В сотрудничестве с европейскими странами действуют 7 ОЭС, одновременно работают 6 энергетических объединений на территории всего государства: Центр, Урал, Волга, Сибирь, Северо-Запад и Юг. В дополнение имеется параллельная структура Востока, электрическая мощность этой электростанции транзитом обеспечивается Сибирским направлением.

В 2016 году на учет принято объединения Севастополя (Крым). На начало 2017 года в нашей стране действует порядка 700 электрических станций с разным видом обеспечения жизнедеятельности. А установленная мощность электростанций России за прошлый год отметку в 236 ГВт.

10,7% всемирной генерации электричества ежегодно вырабатывают атомные электростанции. Наряду с ТЭС и ГЭС они трудятся над обеспечением человечества светом и теплом, позволяют пользоваться электроприборами и делают наши жизнь удобнее и проще. Так уж вышло, что сегодня слова «атомная станция» ассоциируются с мировыми катастрофами и взрывами. Простые обыватели не имеют ни малейшего понятия о работе АЭС и ее строении, но даже самые непросвещенные наслышаны и напуганы происшествиями в Чернобыле и Фукусиме.

Что такое АЭС? Как они работают? Насколько опасны атомные станции? Не верьте слухам и мифам, давайте разбираться!

16 июля 1945 года на военном полигоне в США впервые извлекли энергию из ядра урана. Мощнейший взрыв атомной бомбы, принесший огромное количество человеческих жертв, стал прототипом современного и абсолютно мирного источника электроэнергии.

Впервые электроэнергию с помощью ядерного реактора получили 20 декабря 1951 года в штате Айдахо в США. Для проверки работоспособности генератор подключили к 4м лампам накаливания, неожиданно для всех лампы зажглись. С этого момента человечество стало использовать энергию ядерного реактора для получения электричества.

Первая в мире атомная станция была запущена в Обнинске в СССР в 1954 году. Ее мощность составляла всего 5 мегаватт.

Что такое АЭС? АЭС это ядерная установка, которая производит энергию с помощью ядерного реактора. Ядерный реактор работает на ядерном топливе, чаще всего уране.

В основе принципа работы ядерной установки лежит реакция деления нейтронов урана , которые сталкиваясь друг с другом, делятся на новые нейтроны, которые, в свою очередь, тоже сталкиваются и тоже делятся. Такая реакция называется цепной, она и лежит в основе ядерной электроэнергетики. При всем этом процессе выделяется тепло, которое нагревает воду до ужасно горячего состояния (320 градусов по Цельсию). Потом вода превращается в пар, пар вращает турбину, она приводит в действие электрогенератор, который и вырабатывает электроэнергию.

Строительство АЭС сегодня ведется большими темпами. Основная причина роста количества АЭС в мире – это ограниченность запасов органического топлива, попросту говоря, запасы газа и нефти иссякают, они необходимы для промышленных и коммунальных нужд, а урана и плутония, выступающих топливом для атомных станций, нужно мало, его запасов пока вполне хватает.

Что такое АЭС? Это не только электричество и тепло. Наряду с выработкой электроэнергии, ядерные электростанции используются и для опреснения воды. К примеру, такая атомная станция есть в Казахстане.

Какое топливо используют на АЭС

На практике в атомных станциях могут применяться несколько веществ, способных выработать атомную электроэнергию, современное топливо АЭС – это уран, торий и плутоний.

Ториевое топливо сегодня не применяется в атомных электростанциях, т.к. его сложнее преобразовать в тепловыделяющие элементы, если коротко ТВЭлы.

ТВЭлы — это металлические трубки, которые помещаются внутрь ядерного реактора. Внутри ТВЭлов находятся радиоактивные вещества. Эти трубки можно назвать хранилищами ядерного топлива. Вторая причина редкого использования тория – это его сложная и дорогая переработка уже после использования на АЭС.

Плутониевое топливо тоже не используется в атомной электроэнергетике, т.к. это вещество имеет очень сложный химический состав, который до сих пор так и не научились правильно использовать.

Урановое топливо

Основное вещество, вырабатывающее энергию на ядерных станциях – это уран. Уран сегодня добывается тремя способами: открытым способом в карьерах, закрытым в шахтах, и способом подземного выщелачивания, с помощью бурения шахт. Последний способ особенно интересен. Для добычи урана выщелачиванием в подземные скважины заливается раствор серной кислоты, он насыщается ураном и выкачивается обратно.

Самые крупные запасы урана в мире находятся в Австралии, Казахстане, России и Канаде. Самые богатые месторождения в Канаде, Заире, Франции и Чехии. В этих странах из тонны руды получают до 22 килограмм уранового сырья. Для сравнения, в России из одной тонны руды получают чуть больше полутора килограмм урана.

Места добычи урана нерадиоактивны. В чистом виде это вещество мало опасно для человека, гораздо большую опасность представляет радиоактивный бесцветный газ радон, который образуется при естественном распаде урана.

В виде руды уран в АЭС использовать нельзя, никаких реакций он дать не сможет. Сначала урановое сырье перерабатывается в порошок – закись окись урана, а уже после оно становится урановым топливом. Урановый порошок превращается в металлические «таблетки», — он прессуется в небольшие аккуратные колбочки, которые обжигаются в течение суток при чудовищно высоких температурах больше 1500 градусов по Цельсию. Именно эти урановые таблетки и поступают в ядерные реакторы, где начинают взаимодействовать друг с другом и, в конечном счете, дают людям электроэнергию.
В одном ядерном реакторе одновременно работают около 10 миллионов урановых таблеток.
Конечно, просто так урановые таблетки в реактор не закидываются. Они помещаются в металлические трубки из циркониевых сплавов — ТВЭлы, трубки соединяются между собой в пучки и образуют ТВС – тепловыделяющие сборки. Именно ТВС и могут по праву называться топливом АЭС.

Переработка топлива АЭС

Примерно через год использования уран в ядерных реакторах нужно менять. Топливные элементы остужают в течение нескольких лет и отправляют на рубку и растворение. В результате химической экстракции выделяются уран и плутоний, которые идут на повторное использование, из них сделают свежее ядерное топливо.

Продукты распада урана и плутония идут на изготовление источников ионизирующих излучений. Они используются в медицине и промышленности.

Все, что остается после этих манипуляций, отправляется в раскаленную печь и из остатков варится стекло, которое потом остается храниться в специальных хранилищах. Почему именно стекло? Из него будет очень сложно достать остатки радиоактивных элементов, которые могут навредить окружающей среде.

Новости АЭС — не так давно появившийся новый способ утилизации радиоактивных отходов. Созданы так называемые быстрые ядерные реакторы или реакторы на быстрых нейтронах, которые работают на переработанных остатках ядерного топлива. По подсчетам ученых, остатки ядерного топлива, которые сегодня хранятся в хранилищах, способны на 200 лет обеспечить топливом реакторы на быстрых нейтронах.

Кроме того, новые быстрые реакторы могут работать на урановом топливе, которое делается из 238 урана, это вещество не используется в привычных атомных станциях, т.к. сегодняшним АЭС проще перерабатывать 235 и 233 уран, которого в природе осталось немного. Таким образом, новые реакторы – это возможность использовать огромные залежи 238го урана, которые до этого никто использовал.

Как строится АЭС?

Что такое атомная электростанция? Что представляет собой это нагромождение серых зданий, которые большинство из нас видело только по телевизору? Насколько прочны и безопасны эти конструкции? Каково строение АЭС? В сердце любой атомной станции находится здание реактора, рядом с ним помещается машинный зал и здание безопасности.

ВАЖНО ЗНАТЬ:

Строительство АЭС ведется согласно нормативным актам, регламентам и требованиям безопасности для объектов, работающих с радиоактивными веществами. Ядерная станция – полноправный стратегический объект государства. Поэтому толщина укладки стен и железобетонных арматурных сооружений в здании реактора в несколько раз больше, чем у стандартных сооружений. Таким образом, помещения атомных станций могут выдержать 8-бальное землетрясение, торнадо, цунами, смерчи и падение самолета.

Здание реактора венчается куполом, который защищен внутренней и внешней бетонными стенками. Внутреннюю бетонную стенку покрывает стальной лист, который в случае аварии должен создать закрытое воздушное пространство и не выпустить радиоактивные вещества в воздух.

Каждая АЭС имеет свой бассейн выдержки. Туда помещаются урановые таблетки, которые уже отслужили свой срок. После того, как урановое топливо вытаскивают из реактора, оно остается чрезвычайно радиоактивным, чтобы реакции внутри ТВЭлов перестали происходить, должно пройти от 3х до 10ти лет (в зависимости от устройства реактора, в котором топливо находилось). В бассейнах выдержки урановые таблетки остывают, и внутри них перестают происходить реакции.

Технологическая схема АЭС, а проще говоря, схема устройства атомных станций бывает нескольких типов, как и характеристика АЭС и тепловая схема АЭС, она зависит от типа ядерного реактора, который используется в процессе получения электроэнергии.

Плавучая АЭС

Что такое АЭС, нам уже известно, но российским ученым пришло в голову, взять атомную станцию и сделать ее передвижной. К сегодняшнему дню проект почти завершен. Назвали эту конструкцию плавучая АЭС. По задумке, плавучая ядерная электростанция сможет обеспечить электричеством город населением до двухсот тысяч человек. Главное ее достоинство – возможность перемещения по морю. Строительство АЭС, способной к передвижению, пока ведется только в России.

Новости АЭС это скорый запуск первой в мире плавучей ядерной электростанции, которая призвана обеспечить энергией портовый город Певек, находящийся в Чукотском автономном округе России. Называется первая плавучая атомная станция «Академик Ломоносов», строится мини-АЭС в Петербурге и планируется к запуску в 2016 – 2019 годах. Презентация атомной электростанции на плаву состоялась в 2015, тогда строители представили почти готовый проект ПАЭС.

Плавучая АЭС призвана обеспечить электроэнергией самые отдаленные города, имеющие выход к морю. Ядерный реактор «Академика Ломоносова» не такой мощный, как у сухопутных атомных станций, но имеет срок эксплуатации 40 лет, это значит, что жители небольшого Певека почти полвека не будут страдать от нехватки электричества.

Плавучая АЭС может быть использована не только как источник тепловой и электроэнергии, но и для опреснения воды. По расчетам, в сутки она может выдать от 40 до 240 кубометров пресной воды.
Стоимость первого блока плавучей АЭС составила 16 с половиной миллиардов рублей, как видим, строительство атомных станций – не дешевое удовольствие.

Безопасность АЭС

После Чернобыльской катастрофы в 1986 году и аварии на Фукусиме в 2011 слова атомная АЭС вызывают у людей страх и панику. На деле современные атомные станции оснащены по последнему слову техники, разработаны специальные правила безопасности, и в целом защита АЭС состоит из 3х уровней:

На первом уровне должна быть обеспечена нормальная эксплуатация АЭС. Безопасность АЭС во многом зависит от правильно подобранного места для размещения атомной станции, качественно созданного проекта, выполнения всех условий при постройке здания. Все должно отвечать регламентам, инструкциям по безопасности и планам.

На втором уровне важно не допустить перехода нормальной работы АЭС в аварийную ситуацию. Для этого существуют специальные приборы, которые контролируют температуру и давление в реакторах, и сообщают о малейших изменениях показаний.

Если первый и второй уровень защиты не сработали, в ход идет третий – непосредственная реакция на аварийную ситуацию. Датчики фиксируют аварию и сами реагируют на нее – реакторы глушатся, источники радиации локализируются, активная зона охлаждается, об аварии сообщается.

Безусловно, ядерная электростанция требует особого внимания к системе безопасности, как на стадии строительства, так и на стадии эксплуатации. Несоблюдения строгого регламента могут повлечь за собой очень серьезные последствия, однако сегодня большая часть ответственности за безопасность АЭС ложится на компьютерные системы, а человеческий фактор почти полностью исключен. Принимая во внимание высокую точность современных машин, в безопасности АЭС можно быть уверенными.

Специалисты уверяют, что в стабильно работающих современных атомных станциях или, находясь рядом с ними, получить большую дозу радиоактивного излучения невозможно. Даже работники АЭС, которые, к слову, ежедневно измеряют уровень полученного излучения, подвергаются облучению не больше, чем обычные жители крупных городов.

Ядерные реакторы

Что такое АЭС? Это в первую очередь работающий ядерный реактор. Внутри него и происходит процесс выработки энергии. В ядерный реактор закладываются ТВС, в нем же урановые нейтроны вступают в реакцию друг с другом, там же они передают тепло воде и так далее.

Внутри конкретного здания реактора находятся следующие сооружения: источник водоснабжения, насос, генератор, паровая турбина, конденсатор, деаэраторы, очиститель, клапан, теплообменник, непосредственно реактор и регулятор давления.

Реакторы бывают нескольких типов, в зависимости от того, какое вещество исполняет функцию замедлителя и теплоносителя в устройстве. Наиболее вероятно, что современная ядерная электростанция будет иметь реакторы на тепловых нейтронах:

  • водо-водяные (с обычной водой в качестве и замедлителя нейтронов, и теплоносителя);
  • графитоводные (замедлитель – графит, теплоноситель – вода);
  • графитогазовые (замедлитель – графит, теплоноситель – газ);
  • тяжеловодные (замедлитель – тяжёлая вода, теплоноситель – обычная вода).

КПД АЭС и мощность АЭС

Общий КПД АЭС (коэффициент полезного действия) с водо-водяным реактором около 33%, с графитоводным – около 40%, тяжеловодным – около 29%. Экономическая состоятельность АЭС зависит от КПД ядерного реактора, энергонапряженности активной зоны реактора, коэффициента использования установленной мощности за год и т.д.

Новости АЭС – обещание ученых в скором времени увеличить КПД атомных станций в полтора раза, до 50%. Это произойдет, если тепловыделяющие сборки, или ТВС, которые непосредственно закладываются в ядерный реактор, будут изготавливать не из сплавов циркония, а из композита. Проблемы АЭС сегодня в том, что цирконий недостаточно жаропрочен, он не выдерживает очень высоких температур и давления, поэтому и КПД АЭС выходит невысоким, композит же может выдержать температуру выше тысячи градусов по Цельсию.

Эксперименты по использованию композита в качестве оболочки для урановых таблеток ведутся в США, Франции и России. Ученые работают над увеличением прочности материала и его внедрением в атомную энергетику.

Что такое атомная электростанция? АЭС это мировая электрическая мощь. Общая электрическая мощность АЭС всего мира – 392 082 МВт. Характеристика АЭС зависит в первую очередь от ее мощности. Самая мощная атомная станция в мире находится во Франции, мощность АЭС Сиво (каждого блока) больше полутора тысяч МВт (мегаватт). Мощность других ядерных электростанций колеблется от 12 МВт в мини-АЭС (Билибинская АЭС, Россия) до 1382 МВт (атомная станция Фламанвиль, Франция). На этапе строительства находятся блок Фламанвиль с мощностью 1650 МВт, атомные станции Южной Кореи Син-Кори с мощностью АЭС в 1400 МВт.

Стоимость АЭС

АЭС, что это? Это и большие деньги. Сегодня людям нужны любые способы добычи электроэнергии. Водяные, тепловые и атомные электростанции повсеместно строятся в более или менее развитых странах. Строительство атомной станции – процесс не из легких, требует больших затрат и капиталовложений, чаще всего денежные ресурсы черпаются из государственных бюджетов.

В стоимость АЭС входят капитальные затраты — расходы на подготовку площади, строительство, введение оборудования в эксплуатацию (суммы капитальных расходов запредельные, к примеру, один парогенератор АЭС стоит больше 9ти миллионов долларов). Кроме того ядерные станции требуют и эксплуатационных расходов, которые включают в себя покупку топлива, расходы на его утилизацию и проч.

По многим причинам официальная стоимость ядерной станции высчитывается лишь приблизительно, сегодня ядерная станция обойдется примерно в 21-25 миллиардов евро. С нуля построить один атомный блок обойдется примерно в 8 миллионов долларов. В среднем срок окупаемости одной станции – 28 лет, срок эксплуатации – 40 лет. Как видно, атомные станции – достаточно дорогое удовольствие, но, как мы выяснили, невероятно нужное и полезное для нас с вами.


Атомная электростанция или сокращенно АЭС это комплекс технических сооружений, предназначенных для выработки электрической энергии путём использования энергии, выделяемой при контролируемой ядерной реакции.

Во второй половине 40-х годов, перед тем, как были закончены работы по созданию первой атомной бомбы которая была испытана 29 августа 1949 года, советские ученые приступили к разработке первых проектов мирного использования атомной энергии. Основным направлением проектов была электроэнергетика.

В мае 1950 года в районе поселка Обнинское Калужской области, начато строительство первой в мире АЭС.

Впервые электроэнергию с помощью ядерного реактора получили 20 декабря 1951 года в штате Айдахо в США.

Для проверки работоспособности генератор был подключен к четырем лампам накаливания, ни то не ожидал, что лампы зажгутся.

С этого момента человечество стало использовать энергию ядерного реактора для получения электричества.

Первые Атомные электростанции

Строительство первой в мире атомная электростанция мощностью 5 МВт было закончено в 1954 году и 27 июня 1954 года она была запущена, так начала работать .


В 1958 была введена в эксплуатацию 1-я очередь Сибирской АЭС мощностью 100 МВт.

Строительство Белоярской промышленной АЭС началось так же в 1958 году. 26 апреля 1964 генератор 1-й очереди дал ток потребителям.

В сентябре 1964 был пущен 1-й блок Нововоронежской АЭС мощностью 210 МВт. Второй блок мощностью 350 МВт запущен в декабре 1969.

В 1973 г. запущена Ленинградская АЭС.

В других странах первая АЭС промышленного назначения была введена в эксплуатацию в 1956 в Колдер-Холле (Великобритания) ее мощность составляла 46 МВт.

В 1957 году вступила в строй АЭС мощностью 60 МВт в Шиппингпорте (США).

Мировыми лидерами в производстве ядерной электроэнергии являются:

  1. США (788,6 млрд кВт ч/год),
  2. Франция(426,8 млрд кВт ч/год),
  3. Япония (273,8 млрд кВт ч/год),
  4. Германия (158,4 млрд кВт ч/год),
  5. Россия (154,7 млрдкВт ч/год).

Классификация АЭС

Атомные электростанции можно классифицировать по нескольким направлениям:

По типу реакторов

  • Реакторы на тепловых нейтронах, использующие специальные замедлители для увеличения вероятностипоглощения нейтрона ядрами атомов топлива
  • Реакторы на лёгкой воде
  • Реакторы на тяжёлой воде
  • Реакторы на быстрых нейтронах
  • Субкритические реакторы, использующие внешние источники нейтронов
  • Термоядерные реакторы

По виду отпускаемой энергии

  1. Атомные электростанции (АЭС), предназначенные для выработки только электроэнергии
  2. Атомные теплоэлектроцентрали (АТЭЦ), вырабатывающие как электроэнергию, так и тепловую энергию

На атомных станциях, расположенных на территории России имеются теплофикационные установки, они необходимы для подогрева сетевой воды.

Виды топлива используемого на Атомных электростанциях

На атомных электростанциях возможно использование несколько веществ, благодаря которым можно выработать атомную электроэнергию, современное топливо АЭС – это уран, торий и плутоний.

Ториевое топливо сегодня не применяется в атомных электростанциях, для этого есть ряд причин.

Во-первых , его сложнее преобразовать в тепловыделяющие элементы, сокращенно ТВЭлы.

ТВЭлы - это металлические трубки, которые помещаются внутрь ядерного реактора. Внутри

ТВЭлов находятся радиоактивные вещества. Эти трубки являются хранилищами ядерного топлива.

Во-вторых , использование ториевого топлива предполагает его сложную и дорогую переработку уже после использования на АЭС.

Плутониевое топливо так же не применяют в атомной электроэнергетике, в виду того, что это вещество имеет очень сложный химический состав, система полноценного и безопасного применения еще не разработана.

Урановое топливо

Основное вещество, вырабатывающее энергию на ядерных станциях – это уран. На сегодняшний день уран добывается несколькими способами:

  • открытым способом в карьерах
  • закрытым в шахтах
  • подземным выщелачиванием, при помощи бурения шахт.

Подземное выщелачивание, при помощи бурения шахт происходит путем размещения раствора серной кислоты в подземных скважинах, раствор насыщается ураном и выкачивается обратно.

Самые крупные запасы урана в мире находятся в Австралии, Казахстане, России и Канаде.

Самые богатые месторождения в Канаде, Заире, Франции и Чехии. В этих странах из тонны руды получают до 22 килограмм уранового сырья.

В России из одной тонны руды получают чуть больше полутора килограмм урана. Места добычи урана нерадиоактивны.

В чистом виде это вещество мало опасно для человека, гораздо большую опасность представляет радиоактивный бесцветный газ радон, который образуется при естественном распаде урана.

Подготовка урана

В виде руды уран в АЭС не используют, руда не вступает в реакцию. Для использования урана на АЭС сырье перерабатывается в порошок – закись окись урана, а уже после оно становится урановым топливом.

Урановый порошок превращается в металлические «таблетки», - он прессуется в небольшие аккуратные колбочки, которые обжигаются в течение суток при температурах больше 1500 градусов по Цельсию.

Именно эти урановые таблетки и поступают в ядерные реакторы, где начинают взаимодействовать друг с другом и, в конечном счете, дают людям электроэнергию.

В одном ядерном реакторе одновременно работают около 10 миллионов урановых таблеток.

Перед размещением урановых таблеток в реакторе они помещаются в металлические трубки из циркониевых сплавов - ТВЭлы, трубки соединяются между собой в пучки и образуют ТВС – тепловыделяющие сборки.

Именно ТВС называются топливом АЭС.

Как происходит переработка топлива АЭС

Спустя год использования урана в ядерных реакторах необходимо производить его замену.

Топливные элементы остужают в течение нескольких лет и отправляют на рубку и растворение.

В результате химической экстракции выделяются уран и плутоний, которые идут на повторное использование, из них делают свежее ядерное топливо.

Продукты распада урана и плутония направляются на изготовление источников ионизирующих излучений, их используют в медицине и промышленности.

Все, что остается после этих манипуляций, отправляется в печь для разогрева, из этой массы варится стекло, такое стекло находится в специальных хранилищах.

Из остатков изготавливают стекло не для массового применения, стекло используется для хранения радиоактивных веществ.

Из стекла сложно выделить остатки радиоактивных элементов, которые могут навредить окружающей среде. Недавно появился новый способ утилизации радиоактивных отходов.

Быстрые ядерные реакторы или реакторы на быстрых нейтронах, которые работают на переработанных остатках ядерного топлива.

По подсчетам ученых, остатки ядерного топлива, которые сегодня хранятся в хранилищах, способны на 200 лет обеспечить топливом реакторы на быстрых нейтронах.

Помимо этого, новые быстрые реакторы могут работать на урановом топливе, которое делается из 238 урана, это вещество не используется в привычных атомных станциях, т.к. сегодняшним АЭС проще перерабатывать 235 и 233 уран, которого в природе осталось немного.

Таким образом, новые реакторы – это возможность использовать огромные залежи 238го урана, которые до этого не применялись.

Принцип работы АЭС

Принцип работы атомной электростанции на двухконтурном водо-водяном энергетическом реакторе (ВВЭР).

Энергия, выделяемая в активной зоне реактора, передаётся теплоносителю первого контура.

На выходе из турбин, пар поступает в конденсатор, где охлаждается большим количеством воды, поступающим из водохранилища.


Компенсатор давления представляет собой довольно сложную и громоздкую конструкцию, которая служит для выравнивания колебаний давления в контуре во время работы реактора, возникающих за счёт теплового расширения теплоносителя. Давление в 1-м контуре может доходить до 160 атмосфер (ВВЭР-1000).

Помимо воды, в различных реакторах в качестве теплоносителя может применяться также расплавленный натрий или газ.

Использование натрия позволяет упростить конструкцию оболочки активной зоны реактора (в отличие от водяного контура, давление в натриевом контуре не превышает атмосферное), избавиться от компенсатора давления, но создаёт свои трудности, связанные с повышенной химической активностью этого металла.

Общее количество контуров может меняться для различных реакторов, схема на рисунке приведена для реакторов типа ВВЭР (Водо-Водяной Энергетический Реактор).

Реакторы типа РБМК (Реактор Большой Мощности Канального типа) использует один водяной контур, а реакторы БН (реактор на Быстрых Нейтронах) - два натриевых и один водяной контуры.

В случае невозможности использования большого количества воды для конденсации пара, вместо использования водохранилища, вода может охлаждаться в специальных охладительных башнях (градирнях), которые благодаря своим размерам обычно являются самой заметной частью атомной электростанции.

Устройство ядерного реактора

В ядерном реакторе используется процесс деления ядер, при котором тяжелое ядро распадается на два более мелких фрагмента.

Эти осколки находятся в очень возбужденном состоянии и испускают нейтроны, другие субатомные частицы и фотоны.

Нейтроны могут вызвать новые деления, в результате которых их излучается еще больше, и так далее.

Такой непрерывный самоподдерживающийся ряд расщеплений называется цепной реакцией.

При этом выделяется большое количество энергии, производство которой является целью использования АЭС.

Принцип работы ядерного реактора и атомной электростанции таков, что коло 85% энергии расщепления высвобождается в течение очень короткого промежутка времени после начала реакции.

Остальная часть вырабатывается в результате радиоактивного распада продуктов деления, после того как они излучили нейтроны.

Радиоактивный распад является процессом, при котором атом достигает более стабильного состояния. Он продолжается и после завершения деления.

Основные элементы ядерного реактора

  • Ядерное топливо: обогащённый уран, изотопы урана и плутония. Чаще всего используется уран 235;
  • Теплоноситель для вывода энергии, которая образуется при работе реактора: вода, жидкий натрий и др.;
  • Регулирующие стержни;
  • Замедлитель нейтронов;
  • Оболочка для защиты от излучения.

Принцип действия ядерного реактора

В активной зоне реактора располагаются тепловыделяющие элементы (ТВЭЛ) – ядерное топливо.

Они собраны в кассеты, включающие в себя по несколько десятков ТВЭЛов. По каналам через каждую кассету протекает теплоноситель.

ТВЭЛы регулируют мощность реактора. Ядерная реакция возможна только при определённой (критической) массе топливного стержня.

Масса каждого стержня в отдельности ниже критической. Реакция начинается, когда все стержни находятся в активной зоне. Погружая и извлекая топливные стержни, реакцией можно управлять.

Итак, при превышении критической массы топливные радиоактивные элементы, выбрасывают нейтроны, которые сталкиваются с атомами.

В результате образуется нестабильный изотоп, который сразу же распадается, выделяя энергию, в виде гамма излучения и тепла.

Частицы, сталкиваясь, сообщают кинетическую энергию друг другу, и количество распадов в геометрической прогрессии увеличивается.

Это и есть цепная реакция - принцип работы ядерного реактора. Без управления она происходит молниеносно, что приводит к взрыву. Но в ядерном реакторе процесс находится под контролем.

Таким образом, в активной зоне выделяется тепловая энергия, которая передаётся воде, омывающей эту зону (первый контур).

Здесь температура воды 250-300 градусов. Далее вода отдаёт тепло второму контуру, после этого – на лопатки турбин, вырабатывающих энергию.

Преобразование ядерной энергии в электрическую можно представить схематично:

  • Внутренняя энергия уранового ядра
  • Кинетическая энергия осколков распавшихся ядер и освободившихся нейтронов
  • Внутренняя энергия воды и пара
  • Кинетическая энергия воды и пара
  • Кинетическая энергия роторов турбины и генератора
  • Электрическая энергия

Активная зона реактора состоит из сотен кассет, объединенных металлической оболочкой. Эта оболочка играет также роль отражателя нейтронов.

Среди кассет вставлены управляющие стержни для регулировки скорости реакции и стержни аварийной защиты реактора.

Атомная станция теплоснабжения

Первые проекты таких станций были разработаны ещё в 70-е годы XXвека, но из-за наступивших в конце 80-х годов экономических потрясений и жёсткого противодействия общественности, до конца ни один из них реализован не был.

Исключение составляют Билибинская АЭС небольшой мощности, она снабжает теплом и электричеством посёлок Билибино в Заполярье (10 тыс. жителей) и местные горнодобывающие предприятия, а также оборонные реакторы (они занимаются производством плутония):

  • Сибирская АЭС, поставляющая тепло в Северск и Томск.
  • Реактор АДЭ-2 на Красноярском горно-химического комбинате, с 1964 г.поставляющий тепловую и электрическую энергию для города Железногорска.

На момент кризиса было начато строительство нескольких АСТ на базе реакторов, аналогичных ВВЭР-1000:

  • Воронежская АСТ
  • Горьковская АСТ
  • Ивановская АСТ (только планировалась)

Строительство этих АСТ было остановлено во второй половине 1980-х или начале 1990-х годов.

В 2006 году концерн «Росэнергоатом» планировал построить плавучую АСТ для Архангельска, Певека и других заполярных городов на базе реакторной установки КЛТ-40, используемой на атомных ледоколах.

Имеется проект, строительства необслуживаемой АСТ на базе реактора «Елена», и передвижной (железнодорожным транспортом) реакторной установки «Ангстрем»

Недостатки и преимущества АЭС

Любой инженерный проект имеет свои положительные и отрицательные стороны.

Положительные стороны атомных станций:

  • Отсутствие вредных выбросов;
  • Выбросы радиоактивных веществ в несколько раз меньше угольной эл. станции аналогичной мощности (золаугольных ТЭС содержит процент урана и тория, достаточный для их выгодного извлечения);
  • Небольшой объём используемого топлива и возможность его повторного использования после переработки;
  • Высокая мощность: 1000-1600 МВт на энергоблок;
  • Низкая себестоимость энергии, особенно тепловой.

Отрицательные стороны атомных станций:

  • Облучённое топливо опасно, требует сложных и дорогих мер по переработке и хранению;
  • Нежелателен режим работы с переменной мощностью для реакторов, работающих на тепловых нейтронах;
  • Последствия возможного инцидента крайне тяжелые, хотя его вероятность достаточно низкая;
  • Большие капитальные вложения, как удельные, на 1 МВт установленной мощности для блоков мощностью менее 700-800 МВт, так и общие, необходимые для постройки станции, её инфраструктуры, а также в случае возможной ликвидации.

Научные разработки в сфере атомной энергетики

Конечно, имеются недостатки и опасения, но при этом атомная энергия представляется самой перспективной.

Альтернативные способы получения энергии, за счёт энергии приливов, ветра, Солнца, геотермальных источников и др. в настоящее время имеют не высокий уровнем получаемой энергии, и её низкой концентрацией.

Необходимые виды получения энергии, имеют индивидуальные риски для экологии и туризма, например производство фотоэлектрических элементов, которое загрязняет окружающую среду, опасность ветряных станций для птиц, изменение динамики волн.

Ученые разрабатывают международные проекты ядерных реакторов нового поколения, например ГТ-МГР, которые позволят повысить безопасность и увеличить КПД АЭС.

Россия начала строительство первой в мире плавающей АЭС, она позволяет решить проблему нехватки энергии в отдалённых прибрежных районах страны.

США и Япония ведут разработки мини-АЭС, с мощностью порядка 10-20 МВт для целей тепло и электроснабжения отдельных производств, жилых комплексов, а в перспективе - и индивидуальных домов.

Уменьшение мощности установки предполагает рост масштабов производства. Малогабаритные реакторы создаются с использованием безопасных технологий, многократно уменьшающих возможность утечки ядерного вещества.

Производство водорода

Правительством США принята Атомная водородная инициатива. Совместно с Южной Кореей ведутся работы по созданию атомных реакторов нового поколения, способных производить в больших количествах водород.

INEEL (Idaho National Engineering Environmental Laboratory) прогнозирует, что один энергоблок атомной электростанции следующего поколения, будет производить ежедневно водород, эквивалентный 750000 литров бензина.

Финансируются исследования возможностей производства водорода на существующих атомных электростанциях.

Термоядерная энергетика

Ещё более интересной, хотя и относительно отдалённой перспективой выглядит использование энергии ядерного синтеза.

Термоядерные реакторы, по расчётам, будут потреблять меньше топлива на единицу энергии, и как само это топливо (дейтерий, литий, гелий-3), так и продукты их синтеза нерадиоактивны и, следовательно, экологически безопасны.

В настоящее время при участии России, на юге Франции ведётся строительство международного экспериментального термоядерного реактора ITER.

Что такое КПД

Коэффициент полезного действия (КПД) - характеристика эффективности системы или устройства в отношении преобразования или передачи энергии.

Определяется отношением полезно использованной энергии к суммарному количеству энергии, полученному системой. КПД является безразмерной величиной и часто измеряется в процентах.

КПД атомной электростанции

Наиболее высокий КПД (92-95%) – достоинство гидроэлектростанций. На них генерируется 14% мировой электро мощности.

Однако, этот тип станций наиболее требователен к месту возведения и, как показала практика, весьма чувствителен к соблюдению правил эксплуатации.

Пример событий на Саяно-Шушенской ГЭС показал, к каким трагическим последствиям может привести пренебрежение правилами эксплуатации в стремлении снизить эксплуатационные издержки.

Высоким КПД (80%) обладают АЭС. Их доля в мировом производстве электроэнергии составляет 22%.

Но АЭС требуют повышенного внимания к проблеме безопасности, как на стадии проектирования, так и при строительстве, и во время эксплуатации.

Малейшие отступления от строгих регламентов обеспечения безопасности для АЭС, чревато фатальными последствиями для всего человечества.

Кроме непосредственной опасности в случае аварии, использование АЭС сопровождается проблемами безопасности, связанными с утилизацией или захоронением отработанного ядерного топлива.

КПД тепловых электростанций не превышает 34%, на них вырабатывается до шестидесяти процентов мировой электроэнергии.

Кроме электроэнергии на тепловых электростанциях производится тепловая энергия, которая в виде горячего пара или горячей воды может передаваться потребителям на расстояние в 20-25 километров. Такие станции называют ТЭЦ (Тепло Электро Централь).

ТЕС и ТЕЦ не дорогие в строительстве, но если не будут приняты специальные меры, они неблагоприятно воздействуют на окружающую среду.

Неблагоприятное воздействие на окружающую среду зависит от того, какое топливо применяется в тепловых агрегатах.

Наиболее вредны продукты сгорания угля и тяжёлых нефтепродуктов, природный газ менее агрессивен.

ТЭС являются основными источниками электроэнергии на территории России, США и большинства стран Европы.

Однако, есть исключения, например, в Норвегии электроэнергия вырабатывается в основном на ГЭС, а во Франции 70% электроэнергии генерируется на атомных станциях.

Первая электростанция в мире

Самая первая центральная электростанция, the Pearl Street, была сдана в эксплуатацию 4 сентября 1882 года в Нью-Йорке.

Станция была построена при поддержке Edison Illuminating Company, которую возглавлял Томас Эдисон.

На ней были установлены несколько генераторов Эдисона общей мощностью свыше 500 кВт.

Станция снабжала электроэнергией целый район Нью-Йорка площадью около 2,5 квадратных километров.

Станция сгорела дотла в 1890году, сохранилась только одна динамо-машина, которая сейчас находится в музее the Greenfield Village, Мичиган.

30 сентября 1882 года заработала первая гидроэлектростанция the Vulcan Street в штате Висконсин. Автором проекта был Г.Д. Роджерс, глава компании the Appleton Paper & Pulp.

На станции был установлен генератор с мощностью приблизительно 12.5 кВт. Электричества хватало на дом Роджерса и на две его бумажные фабрики.

Электростанция Gloucester Road. Брайтон был одним из первых городов в Великобритании с непрерывным электроснабжением.

В 1882 году Роберт Хаммонд основал компанию Hammond Electric Light , а 27 февраля 1882 года он открыл электростанцию Gloucester Road.

Станция состояла из динамо щетки, которая использовалась, чтобы привести в действие шестнадцать дуговых ламп.

В 1885 году электростанция Gloucester была куплена компанией Brighton Electric Light. Позже на этой территории была построена новая станция, состоящая из трех динамо щеток с 40 лампами.

Электростанция Зимнего дворца

В 1886 году в одном из внутренних дворов Нового Эрмитажа была построена электростанция.

Электростанция была крупнейшей во всей Европе, не только на момент постройки, но и на протяжении последующих 15 лет.


Ранее для освещения Зимнего дворца использовались свечи, с 1861 года начали использовать газовые светильники. Так как электролампы имели большее преимущество, были начаты разработки по внедрению электроосвещения.

Прежде чем здание было полностью переведено на электричество, освещении при помощи ламп использовали для освещения дворцовых зал во время рождественских и новогодних праздников 1885 года.

9 ноября 1885 года, проект строительства «фабрики электричества» был одобрен императором Александром III. Проект включал электрификацию Зимнего дворца, зданий Эрмитажа, дворовой и прилегающей территории в течение трех лет до 1888 года.

Была необходимость исключить возможность вибрации здания от работы паровых машин, размещение электростанции предусмотрели в отдельном павильоне из стекла и металла. Его разместили во втором дворе Эрмитажа, с тех пор называемом «Электрическим».

Как выглядела станция

Здание станции занимало площадь 630 м², состояло из машинного отделения с 6 котлами, 4 паровыми машинами и 2 локомобилями и помещения с 36 электрическими динамо-машинами. Общая мощность достигала 445 л.с.

Первыми осветили часть парадных помещений:

  • Аванзал
  • Петровский зал
  • Большой фельдмаршальский зал
  • Гербовый зал
  • Георгиевский зал
Было предложено три режима освещения:
  • полное (праздничное) включать пять раз в году (4888 ламп накаливания и 10 свечей Яблочкова);
  • рабочее – 230 ламп накаливания;
  • дежурное (ночное) – 304 лампы накаливания.
    Станция потребляла около 30 тыс. пудов (520 т) угля в год.

Крупные ТЭС, АЭС и ГЭС России

Крупнейшие электростанции России по федеральным округам:

Центральный:

  • Костромская ГРЭС, которая работает на мазуте;
  • Рязанская станция, основным топливом для которой является уголь;
  • Конаковская, которая может работать на газе и мазуте;

Уральский:

  • Сургутская 1 и Сургутская 2. Станции, которые являются одними из самых крупных электростанций РФ. Обе они работают на природном газе;
  • Рефтинская, функционирующая на угле и являющаяся одной из крупнейших электростанций на Урале;
  • Троицкая, также работающая на угле;
  • Ириклинская, главным источником топлива для которой является мазут;

Приволжский:

  • Заинская ГРЭС, работающая на мазуте;

Сибирский ФО:

  • Назаровская ГРЭС, потребляющая в качестве топлива мазут;

Южный:

  • Ставропольская, которая также может работать на совмещенном топливе в виде газа и мазута;

Северо-Западный:

  • Киришская на мазуте.

Список электростанций России, которые вырабатывают энергию при помощи воды, расположены на территории Ангаро-Енисейского каскада:

Енисей:

  • Саяно-Шушенская
  • Красноярская ГЭС;

Ангара:

  • Иркутская
  • Братская
  • Усть-Илимская.

Атомные электростанции России

Балаковская АЭС

Расположена рядом с городом Балаково, Саратовской области, на левом берегу Саратовского водохранилища. Состоит из четырёх блоков ВВЭР-1000, введённых в эксплуатацию в 1985, 1987, 1988 и 1993 годах.

Белоярская АЭС

Расположена в городе Заречный, в Свердловской области, вторая промышленная атомная станция в стране (после Сибирской).

На станции были сооружены четыре энергоблока: два с реакторами на тепловых нейтронах и два с реактором на быстрых нейтронах.

В настоящее время действующими энергоблоками являются 3-й и 4-й энергоблоки с реакторами БН-600 и БН-800 электрической мощностью 600 МВт и 880 МВт соответственно.

БН-600 сдан в эксплуатацию в апреле 1980 - первый в мире энергоблок промышленного масштаба с реактором на быстрых нейтронах.

БН-800 сдан в промышленную эксплуатацию в ноябре 2016 г. Он также является крупнейшим в мире энергоблоком с реактором на быстрых нейтронах.

Билибинская АЭС

Расположена рядом с городом Билибино Чукотского автономного округа. Состоит из четырёх блоков ЭГП-6 мощностью по 12 МВт, введённых в эксплуатацию в 1974 (два блока), 1975 и 1976 годах.

Вырабатывает электрическую и тепловую энергию.

Калининская АЭС

Расположена на севере Тверской области, на южном берегу озера Удомля и около одноимённого города.

Состоит из четырёх энергоблоков, с реакторами типа ВВЭР-1000, электрической мощностью 1000 МВт, которые были введены в эксплуатацию в 1984, 1986, 2004 и 2011 годах.

4 июня 2006 года было подписано соглашение о строительстве четвёртого энергоблока, который ввели в строй в 2011 году.

Кольская АЭС

Расположена рядом с городом Полярные Зори Мурманской области, на берегу озера Имандра.

Состоит из четырёх блоков ВВЭР-440, введённых в эксплуатацию в 1973, 1974, 1981 и 1984 годах.
Мощность станции - 1760 МВт.

Курская АЭС

Одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.

Расположена рядом с городом Курчатов Курской области, на берегу реки Сейм.

Состоит из четырёх блоков РБМК-1000, введённых в эксплуатацию в 1976, 1979, 1983 и 1985 годах.

Мощность станции - 4000 МВт.

Ленинградская АЭС

Одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.

Расположена рядом с городом Сосновый Бор Ленинградской области, на побережье Финского залива.

Состоит из четырёх блоков РБМК-1000, введённых в эксплуатацию в 1973, 1975, 1979 и 1981 годах.

Мощность станции - 4 ГВт. В 2007 году выработка составила 24,635 млрд кВт ч.

Нововоронежская АЭС

Расположена в Воронежской области рядом с городом Воронеж, на левом берегу реки Дон. Состоит из двух блоков ВВЭР.

На 85 % обеспечивает Воронежскую область электрической энергией, на 50 % обеспечивает город Нововоронеж теплом.

Мощность станции (без учёта ) - 1440 МВт.

Ростовская АЭС

Расположена в Ростовской области около города Волгодонск. Электрическая мощность первого энергоблока составляет 1000 МВт, в 2010 году подключен к сети второй энергоблок станции.

В 2001-2010 годах станция носила название «Волгодонская АЭС», с пуском второго энергоблока АЭС станция была официально переименована в Ростовскую АЭС.

В 2008 году АЭС произвела 8,12 млрд кВт-час электроэнергии. Коэффициент использования установленной мощности (КИУМ) составил 92,45 %. С момента пуска (2001) выработала свыше 60 млрд кВт-час электроэнергии.

Смоленская АЭС

Расположена рядом с городом Десногорск Смоленской области. Станция состоит из трёх энергоблоков, с реакторами типа РБМК-1000, которые введены в эксплуатацию в 1982, 1985 и 1990 годах.

В состав каждого энергоблока входят: один реактор тепловой мощностью 3200 МВт и два турбогенератора электрической мощностью по 500 МВт каждый.

Атомные электростанции США

АЭС Шиппингпорт с номинальной мощностью 60 МВт, открыта в 1958 году в штате Пенсильвания. После 1965 года произошло интенсивное сооружение атомных электростанций по всей территории Штатов.

Основная часть атомных станций Америки была сооружена в дальнейшие после 1965 года 15 лет, до наступления первой серьезной аварии на АЭС на планете.

Если в качестве первой аварии вспоминается авария на Чернобыльской АЭС, то это не так.

Причиной аварии стали нарушения в системе охлаждения реактора и многочисленные ошибки обслуживающего персонала. В итоге расплавилось ядерное топливо. На устранение последствий аварии ушло около одного миллиарда долларов, процесс ликвидации занял 14 лет.


После авария правительство Соединенных Штатов Америки откорректировало условия безопасности функционирования всех АЭС в государстве.

Это соответственно привело к продолжению периода строительства и значительному подорожанию объектов «мирного атома». Такие изменения затормозили развитие общей индустрии в США.

В конце двадцатого века в Соединенных Штатах было104 работающих реактора. На сегодняшний день США занимают первое место на земле по численности ядерных реакторов.

С начала 21 столетия в Америке было остановлено четыре реактора в 2013 году, и начато строительство ещё четырех.

Фактически на сегодняшний момент в США функционирует 100 реакторов на 62 атомных электростанциях, которыми производится 20% от всей энергии в государстве.

Последний сооруженный реактор в США был введен в эксплуатацию в 1996 году на электростанции Уотс-Бар.

Власти США в 2001 году приняли новое руководство по энергетической политике. В нее внесен вектор развития атомной энергетики, посредствам разработки новых видов реакторов, с более подходящим коэффициентом экономности, новых вариантов переработки отслужившего ядерного топлива.

В планах до 2020 года было сооружение нескольких десятков новых атомных реакторов, совокупной мощностью 50 000 МВт. Кроме того, достичь поднятия мощности уже имеющихся АЭС приблизительно на 10 000 МВт.

США - лидер по количеству атомных станций в мире

Благодаря внедрению данной программы, в Америке в 2013 году было начато строительство четырех новых реакторов – два из которых на АЭС Вогтль, а два других на Ви-Си Саммер.

Эти четыре реактора новейшего образца – АР-1000, производства Westinghouse.