Дифференциация клеток. Детерминация клеток

Каждая из которых имеет одинаковый наследственный код. Все они развивались сначала из одноклеточного, а затем многоклеточного зародыша, который чуть позже разделился на три зародышевых листка. Из каждого его участка развились ткани организма, где располагаются примерно однотипные клетки. При этом практически все они развивались из одной группы предшественников. Такой процесс называется дифференцировкой клеток. Это локальная адаптация клетки к реальным потребностям организма, реализация запрограммированных в ее наследственном коде функций.

Характеристика клеток и тканей

Соматические клетки организма имеют одинаковый хромосомальный набор независимо от функционального предназначения. Однако по фенотипу они различны, что объясняется их подготовкой к выполнению различных локальных задач в биологических тканях. Фенотипом называется результат экспрессии определенного генетического набора в определенной среде обитания. И в различных условиях клетки с одинаковым генетическим материалом развиваются по-разному, имеют другие морфологические характеристики, выполняют специфические функции.

Высокоразвитому организму это необходимо для образования множества тканей, из которых состоят его органы. При этом ткани создаются из однородной группы стволовых предшественников. Такой процесс называется дифференцировкой клеток. Это цепочка событий, направленная на популяции по заранее заданным критериям для роста и развития биологических тканей организма. Она лежит в основе роста организма и его многоклеточной организации.

Сущность дифференцировки

В плане молекулярной биологии, дифференцировка клеток - это процесс активации одних участков хромосом и дезактивации других. То есть, компактная упаковка или раскручивание участков хромосом, что делает их доступными для считывания наследственной информации. В конъюгированном состоянии, когда гены упакованы в гетерохроматин, считывание невозможно, а в расправленном виде нужные участки генетического кода становятся доступными для информационной РНК и последующей экспрессии. Значит, дифференцировка клеток - это нестрогая регулируемая типизация однотипной упаковки хроматина.

Цитокины и мессенджеры

В результате у группы клеток, дифференцированных в одинаковых условиях и имеющих аналогичные морфологические особенности, наблюдается десприрализация одинаковых участков хромосом. И в ходе воздействия межклеточных мессенджеров, локальных регуляторов клеточной дифференцировки, нужные участки генов активируются, происходит их экспрессия. И потому клетки биологических тканей производят одинаковые вещества и выполняют аналогичные функции, для чего и предусмотрен этот процесс. С этой точки зрения дифференциация клеток - это направленное воздействие молекулярными факторами (цитокинами) на экспрессию генетической информации.

Мембранные рецепторы

Клетки одной ткани имеют аналогичный набор мембранных рецепторов, наличие которых контролируется Т-киллерами иммунной системы. Потеря клеточного рецептора нужного типа или экспрессия другого, не предусмотренного для данной локализации из-за риска онкогенеза, вызывает направленную клеточную агрессию против «нарушителя». Результатом будет уничтожение клетки, дифференциация которой прошла не по правилам, предусмотренным воздействием межклеточных мессенджеров от специализированных регуляторов.

Иммунная дифференцировка

Иммунные клетки имеют специальные рецепторные молекулы, которые называются кластерами дифференцировки. Это так называемые маркеры, по которым можно понять, в каких условиях развивались иммуноциты, и для каких целей они предназначены. Они проходят длительный и сложный процесс дифференцировки, на каждой ступени которого отсеиваются и уничтожаются группы лимфоцитов, у которых развилось недостаточное количество рецепторов, либо в их взаимодействии с антителами замечены «несоответствия требованиям».

Клеточные группы и ткани

Большинство клеток организма делится надвое в ходе митотического размножения. На его подготовительном этапе происходит удвоение генетической информации, после чего образуются две дочерние клетки с аналогичным набором генов. Копированию подлежат не только активные участки хромосом, но и конъюгированные. Потому в тканях дифференцированные клетки после деления дают две новые дочерние клетки, имеющие генетический материал, аналогичный полному соматическому набору хромосом. Однако дифференцироваться в другие клетки они неспособны, так как не могут мигрировать естественным путем в другие условия обитания, то есть к другим мессенджерам дифференцировки.

Рост клеточной популяции

Сразу после деления две дочерние клетки они получают специальный набор органелл, доставшихся им «в наследство» от материнской. Эти мельчайшие функциональные элементы уже подготовлены к выполнению нужных задач в данной биологической ткани. А потому дочерней клетке нужно лишь нарастить объем полостей эндоплазматической сети и увеличиться в размерах.

Также целью развития клетки является получения адекватного уровня снабжения питательными веществами и связанным кислородом. Для этого в случае кислородного или энергетического голодания она выбрасывает в межклеточное пространство факторы ангиогенеза. По этим якорям прорастают новые капиллярные сосуды, которые и будут осуществлять питание группы клеток.

Процесс увеличения в размере, получения адекватного снабжения кислородом и энергетическими субстратами, а также расширения внутриклеточных органелл с увеличением скорости продукции белка называется ростом клетки. Он лежит в основе роста многоклеточного организма и регулируется многочисленными факторами пролиферации. В некоторый момент по достижению предельных размеров по сигналу извне или по стечению обстоятельств выросшая клетка снова разделится пополам, дальше увеличивая размер биологической ткани и организма в целом.

Мезодермальная дифференцировка

В качестве наглядной демонстрации дифференцировки стволовых клеток и более развитых их "потомков" следует рассмотреть трансформацию мезодермального зародышевого листка человеческого организма. От мезодермы - группы стволовых клеток с одинаковым строением и развивающихся в условиях наличия факторов дифференцировки, берут свое начало такие клеточные популяции как нефротом, сомит, спланхнотом, спланхнотомальная мезенхима и парамезонефральный канал.

От каждой такой популяции будут брать свое начало промежуточные формы дифференциации, которые позже дадут начало клеткам взрослого организма. В частности, от сомита развивается три клеточные группы: миотом, дерматом и склеротом. Клетки миотома дадут начало мышечным клеткам, склеротома - хрящевым и костным, а дерматома - соединительной ткани кожи.

Нефротом дает начало эпителию почек и семевыносящих путей, а от парамезонефрального канала будет дифференцироваться эпителий маточной трубы и матки. Фенотип клеток спланхнотома будет подготовлен факторами дифференцировки для их трансформации в мезотелий (плевру, перикард и брюшину), миокард, корковое вещество надпочечников. Мезенхима спланхнотома - это исходный материал для развития клеточных популяций крови, соединительной и гладкой мышечной ткани, сосудов и микроглиальных клеток.

Рост клеток данных популяций, их многократное деление и дифференциация - основа поддержки жизнеспособности многоклеточного организма. Такой процесс также носит название гистогенеза - развитие тканей из клеточных предшественников в результате их дифференциации и трансформации фенотипа в соответствии с влиянием внеклеточных факторов, регулирующих их развитие.

Дифференциация растительных клеток

Функции растительной клетки зависят от места их нахождения, а также наличия модуляторов и супрессоров роста. Зародыш растения в составе семян не имеет вегетативных и герминативных участков, а потому после прорастания он должен их развить, что необходимо для размножения и роста. И пока не наступит благоприятное время для его прорастания, он будет находиться в состоянии покоя.

С момента получения сигнала на рост, функции растительных клеток начнут реализовываться вместе с увеличением в размерах. Клеточные популяции, заложенные в зародыше, пройдут фазу дифференциации и трансформируются в транспортные пути, вегетативные части, герминативные структуры.

гольджи мембранный межклеточный прокариотический

Многоклеточные организмы состоят из клеток, которые в той или иной степени отличаются по строению и функциям, например у взрослого человека около 230 различных типов клеток. Все они являются потомками одной клетки -- зиготы (в случае полового размножения) -- и приобретают различия в результате процесса дифференцировки. Дифференцировка в подавляющем большинстве случаев не сопровождается изменением наследственной информации клетки, а обеспечивается лишь путем регуляции активности генов, специфический характер экспрессии генов наследуется во время деления материнской клетки обычно благодаряэпигенетическим механизмам. Однако есть исключения: например, при образовании клеток специфической иммунной системы позвоночных происходит перестройка некоторых генов, эритроциты млекопитающих полностью теряют всю наследственную информацию, а половые клетки -- её половину.

Различия между клетками на первых этапах эмбрионального развития появляются, во-первых, вследствие неоднородности цитоплазмы оплодотворенной яйцеклетки, из-за чего во время процесса дробления образуются клетки, различающиеся по содержанию определенных белков и РНК; во-вторых, важную роль играет микроокружение клетки -- её контакты с другими клетками и средой.

Подвергаясь дифференцировке, клетки теряют свои потенции, то есть способность давать начало клеткам других типов. Из тотипотентных клеток, к которым относится, в частности зигота, может образоваться целостный организм. Плюрипотентные клетки (например, клетки бластоцисты) имеют возможность дифференцироваться в любой тип клеток организма, но из них не могут развиться внезародышевые ткани, а значит и новая особь. Клетки, которые способны дать начало только ограниченному количеству других тканей, называются мультипотентными (стволовые клетки взрослого человека), а те, которые могут воспроизводить только себе подобных -- унипотентными. Многие из окончательно дифференцированных клеток (например нейроны, эритроциты) полностью теряют способность к делению и выходят из клеточного цикла.

В некоторых случаях дифференцировка может быть обратной, противоположный ей процесс называется дедифференцировкой. Он характерен для процессов регенерации. С некоторыми оговорками к явлению дедифференцировки можно отнести опухолевую трансформацию клеток.

Клеточная смерть.

Одноклеточные организмы в некотором смысле можно считать «бессмертными», поскольку, за исключением случаев повреждения или голодания, они не умирают, а проходят этап деления, в результате которого образуется два новых организма. Зато все клетки многоклеточных организмов (кроме гамет) обречены на гибель, но умирают они не только в случае смерти всей особи -- этот процесс происходит постоянно.

Смерть некоторых клеток необходима во время эмбрионального развития, клетки продолжают умирать и у взрослых организмов, например, в костном мозге и кишечнике человека ежечасно гибнут миллиарды клеток. Из-за физиологических условий происходит «запрограммированная клеточная смерть», другими словами клетки «совершают суицид». Наиболее распространенным, однако не единственным, путем клеточного самоуничтожения является апоптоз. Основными признаками апоптоза является фрагментация ДНК, распад клетки на апоптические тельца -- везикулы, окруженные мембранами. На их поверхности расположены особые молекулы, которые побуждают соседние клетки и макрофаги фагоцитовать их таким образом, что процесс не сопровождается воспалением. Апоптоз является энергозависимым процессом и требует использования АТФ. Этот путь клеточной смерти важен не только для развития организма, нормального функционирования иммунной системы, но также и для защиты особи от поврежденных клеток, которые могут стать на путь злокачественной трансформации, и от вирусных инфекций.

Физическое или химическое повреждение клеток, а также недостаток источников энергии и кислорода, может привести к другой смерти -- некротической. Некроз, в отличие от апоптоза, -- пассивный процесс, он часто сопровождается разрывом плазмалеммы и утечкой цитоплазмы. Некроз почти всегда вызывает воспаление окружающих тканей. В последнее время исследуется механизм запрограммированного некроза как возможной противовирусной и противоопухолевой защиты.

При условии длительного недостатка АТФ в клетке она не сразу погибает путем некроза, а во многих случаях становится на путь аутофагии -- процесса, который позволяет ей ещё некоторое время оставаться жизнеспособной. При аутофагагии (буквально «самопоедание») обмен веществ переключается в сторону активного катаболизма, при этом отдельные органеллы окружаются двойными мембранами, образуются так называемые аутофагосомы, сливающиеся с лизосомами, где происходит переваривание органических веществ. Если голодовка продолжается и после того, как большинство органелл уже «съедено», клетка погибает путем некроза. Некоторые авторы считают, что при определенных условиях автофагия может быть отдельным типом клеточной смерти

Дифференцировка - это процесс, в результате которого клетка становится специализированной, т.е. приобретает химические, морфологические и функциональные особенности. В самом узком смысле - это изменения, происходящие в клетке на протяжении одного, нередко терминального, клеточного цикла, когда начинается синтез главных, специфических для данного клеточного типа, функциональных белков (схема 8.1). Примером может служить дифференцировка клеток эпидермиса кожи человека, при которой в клетках, перемещающихся из базального в шиповатый и затем последовательно в другие, более поверхностные слои, происходит накопление кера- тогиалина, превращающегося в клетках блестящего слоя в элеидин, а затем в роговом слое - в кератин. При этом изменяются форма клеток, строение клеточных мембран и набор органоидов. На самом деле дифференцируется не одна клетка, а группа сходных клеток. Примеров можно привести множество, так как в организме человека насчитывают порядка 220 различных типов клеток. Фибробласты синтезируют коллаген, миобласты - миозин, клетки эпителия пищеварительного тракта - пепсин и трипсин.

В более широком смысле под дифференцировкой понимают постепенное (на протяжении нескольких клеточных циклов) возникновение все больших различий и направлений специализации между клетками, происшедшими из более или менее однородных клеток одного исходного зачатка. Этот процесс непременно сопровождают морфогенетические преобразования, т.е. возникновение и дальнейшее развитие зачатков определенных органов в дефинитивные органы. Первые химические и морфогенетические различия между клетками, обусловливаемые самим ходом эмбриогенеза, обнаруживаются в период гаструляции.

Процесс, в результате которого отдельные ткани в ходе дифферен- цировки приобретают характерный для них вид, называют гистогенезом. Дифференцировка клеток, гистогенез и органогенез совершаются в совокупности, причем в определенных участках зародыша и в определенное время. Это очень важно, потому что указывает на координированность и интегрированность эмбрионального развития.

Необходимо понять, каким образом клетки, обладающие чаще всего одинаковыми кариотипом и генотипом, дифференцируются и участвуют в гисто- и органогенезе в необходимых местах и в определенные сроки соответственно целостному «образу» данного вида организмов. Осторожность при выдвижении положения о том, что

Глава 8. Закономерности индивидуального развития организмов Схема 8.1. Дифференцировка мезодермы

наследственный материал всех соматических клеток абсолютно идентичен, отражает объективную реальность и историческую неоднозначность в трактовке причин клеточной дифференцировки. Развитие представлений о механизмах цитодифференцировки изображено на схеме 8.2.

В. Вейсман выдвинул гипотезу (конец XIX в.) о том, что только линия половых клеток несет в себе и передает потомкам всю информацию своего генома. Соматические клетки, по его мнению, могут отличаться от зиготы и друг от друга количеством наследственного материала и поэтому дифференцироваться в разных направлениях.

Позже были обнаружены примеры изменения количества наследственного материала в соматических клетках как на геномном, так и на хромосомном и генном уровнях. Описаны случаи элиминации целых хромосом у циклопа, комара и у одного из представителей сумчатых. У последних из соматических клеток самки элиминируется Х-хромосома, а из клеток самца - Y-хромосома. В результате соматические клетки у них содержат только по одной Х-хромосоме, а в линии половых клеток сохраняются нормальные кариотипы: XX или XY.

Схема 8.2. Развитие представлений о механизмах цитодифференцировки


В политенных хромосомах слюнных желез двукрылых ДНК может синтезироваться несинхронно, например при политенизации гетерохроматиновые участки реплицируются меньшее число раз, чем эухроматиновые. Сам процесс политенизации, напротив, приводит к значительному увеличению количества ДНК в дифференцированных клетках по сравнению с родоначальными клетками.

Такой механизм репликации ДНК, как амплификация, также приводит к многократному увеличению количества некоторых генов в одних клетках по сравнению с другими. В овогенезе многократно увеличивается число рибосомальных генов, могут амплифициро- ваться и некоторые другие гены. Имеются данные о том, что в некоторых клетках в процессе дифференцировки происходит перестройка генов, например иммуноглобулиновых генов в лимфоцитах.

Однако в настоящее время общепризнанной является точка зрения, ведущая начало от Т. Моргана, который, опираясь на хромосомную теорию наследственности, предположил, что диффе- ренцировка клеток в процессе онтогенеза является результатом последовательных реципрокных (взаимных) влияний цитоплазмы и меняющихся продуктов активности ядерных генов. Таким образом, впервые прозвучала идея о дифференциальной экспрессии генов

как основном механизме цитодифференцировки. В настоящее время собрано много доказательств того, что в большинстве случаев соматические клетки организмов несут полный диплоидный набор хромосом, а генетические потенции ядер соматических клеток могут сохраняться, т.е. гены не утрачивают потенциальной функциональной активности.

Рис. 8.6.

1 - срез корня в питательной среде, 2 - профилирующие клетки в культуре, 3 - клетка, изолированная из культуры, 4 - ранний зародыш, 5 - более поздний зародыш, 6 - молодое растение, 7-взрослое растение

Сохранение полного хромосомного набора развивающегося организма обеспечивается, прежде всего, механизмом митоза. О сохранении генетических потенций ядер соматических клеток можно судить по результатам опытов, проведенных над растениями и животными. Прошедшая длительный путь дифференцировки соматическая клетка моркови способна развиваться в полноценный организм (рис. 8.6). У животных отдельные соматические клетки после стадии бластулы, как правило, не способны развиваться в целый нормальный организм, но их ядра, будучи пересажены в цитоплазму овоцита или яйцеклетки, начинают вести себя соответственно той цитоплазме, в которой они оказались.

Опыты по пересадке ядер соматических клеток в яйцеклетку впервые были успешно осуществлены в 1950-х гг. в США, а в 1960- 1970-х гг. получили широкую известность опыты английского ученого Дж. Гёрдона. Используя африканскую шпорцевую лягушку Xenopus laevis , он в небольшом проценте случаев получил развитие взрослой лягушки из энуклеированной яйцеклетки, в которую пересаживал ядро из эпителиальной клетки кожи лягушки или кишечника головастика, т.е. из дифференцированной клетки (см. рис. 5.3). Энуклеацию яйцеклетки проводили большими дозами ультрафиолетового облучения, что приводило к инактивации ее ядра. Для доказательства того, что в развитии зародыша участвует пересаженное ядро соматической клетки, применили генетическое маркирование. Яйцеклетку брали из линии лягушек с двумя ядрышками в ядре, а ядро клетки донора - из линии, имеющей в ядрах только одно ядрышко вследствие гетерозиготности по делеции ядрышкового организатора. Все ядра в клетках особи, полученной в результате трансплантации ядра, имели только одно ядрышко.

Вместе с тем опыты Гёрдона обнаружили многие другие важнейшие закономерности. Во-первых, они еще раз подтвердили предположение Т. Моргана о решающем значении взаимодействия цитоплазмы и ядра в жизнедеятельности клеток и развитии организма. Во-вторых, в многочисленных экспериментах было показано, что чем старше стадия зародыша-донора, из клеток которого брали ядро для пересадки, тем в меньшем проценте случаев развитие оказывалось полностью завершенным, т.е. достигало стадий головастика, а затем лягушки.

Рис. 8.7. Зависимость успеха пересадки ядер из дифференцированной клетки в яйцеклетку от возраста донора (I - VI) ядра.

Стадия развития, достигаемая клеткой-реципиентом ядра

  • 1 - бластула, II - гаструла, III - нейрула, IV - появление мышечной реакции, V - начало сердечной деятельности и вылупления, VI - активное плавание; 1 - ранняя гаструла,
  • 2 - нейрула, 3 - плавающий головастик, 4 - питающийся головастик; вверху изображена схема опыта

В большинстве случаев развитие останавливалось на более ранних стадиях. Зависимость результатов пересадки от стадии зародыша-донора ядер представлена на рис. 8.7. Анализ зародышей, останавливающихся в развитии после пересадки ядра, показал множество хромосомных аномалий в их ядрах. Другой причиной остановки развития считают неспособность ядер дифференцированных клеток к восстановлению синхронной репликации ДНК.

Главный вывод, который вытекает из этого опыта, заключается в том, что наследственный материал соматических клеток способен сохраняться полноценным не только в количественном, но и в функциональном отношении, цитодиффе- ренцировка не является следствием недостаточности наследственного материала.

Эксперименты по клонированию растений и животных - доказательство полноценности материала соматической клетки. Ученые не исключают возможности воспроизведения подобным овце Долли образом, т.е. путем пересадки ядер, генетических двойников человека. Следует, однако, отдавать себе отчет, что клонирование человека кроме научно-технологического имеет также этический и психологический аспекты.

Гипотеза дифференциальной экспрессии генов в признак принимается в настоящее время в качестве основного механизма цитодиф- ференцировки.

Уровни регуляции дифференциальной экспрессии генов соответствуют этапам реализации информации в направлении ген -> полипептид -э признак и включают не только внутриклеточные процессы, но тканевые и организменные.

Экспрессия гена в признак - это сложный этапный процесс, который можно изучать разными методами: электронной и световой микроскопией, биохимически и другими. На схеме 8.3 приведены основные этапы экспрессии генов и методы, с помощью которых их можно изучать.

Визуальное наблюдение в электронный микроскоп проведено в отношении только отдельных генов - рибосомных, генов хромосом типа ламповых щеток и некоторых других (см. рис. 3.66). На электронограммах отчетливо видно, что одни гены транскрибируются активнее других. Хорошо различимы и неактивные гены.

Особое место занимает изучение политенных хромосом. Политенные хромосомы - это гигантские хромосомы, обнаруживаемые в интерфазных клетках некоторых тканей у мух и других двукрылых. Такие хромосомы есть у них в клетках слюнных желез, мальпигиевых сосудов и средней кишки. Они содержат сотни нитей ДНК, которые редуплицировались, но не подверглись расхождению. При окраске в них выявляются четко выраженные поперечные полосы или диски (см. рис. 3.56). Многие отдельные полосы соответствуют местоположению отдельных генов. Ограниченное число определенных полос в некоторых дифференцированных клетках образует вздутия, или пуфы, выступающие за пределы хромосомы. Эти вздутые участки находятся там, где гены наиболее активны в отношении

транскрипции. Было показано, что клетки разного типа содержат разные пуфы (см. рис. 3.65). Изменения в клетках, происходящие в ходе развития, коррелируют с изменениями в характере пуфов и синтезом определенного белка. Других примеров визуального наблюдения генной активности пока нет.

Все остальные этапы экспрессии генов являются результатом сложных видоизменений продуктов первичной генной активности. Под сложными изменениями подразумевают посттранскрипционные преобразования РНК, трансляцию и посттрансляционные процессы.

Имеются данные по изучению количества и качества РНК в ядре и цитоплазме клеток организмов, находящихся на разных стадиях эмбрионального развития, а также в клетках различных типов у взрослых особей. Обнаружено, что сложность и число различных видов ядерной РНК в 5-10 раз выше, чем мРНК. Ядерные РНК, которые представляют собой первичные продукты транскрипции, всегда длиннее, чем мРНК. Кроме того, ядерная РНК, изученная на морском еже, по количеству и качественному разнообразию идентична на различных стадиях развития особи, а мРНК цитоплазмы отличается в клетках разных тканей. Это наблюдение приводит к мысли о том, что посттранскрипционные механизмы влияют на дифференциальную экспрессию генов.

Примеры посттранскрипционной регуляции экспрессии генов на уровне процессинга известны. Мембранно-связанная форма иммуноглобулина IgM у мышей отличается от растворимой формы дополнительной аминокислотной последовательностью, позволяющей мембранно-связанной форме «заякориваться» в клеточной мембране. Оба белка кодируются одним локусом, но процессинг первичного транскрипта протекает по-разному. Пептидный гормон кальцитонин у крыс представлен двумя разными белками, детерминированными одним геном. У них одинаковые первые 78 аминокислот (при общей длине 128 аминокислот), а различия обусловлены процессингом, т.е. опять наблюдается дифференциальная экспрессия одного и того же гена в различных тканях. Есть и другие примеры. Вероятно, альтернативный процессинг первичных транскрип- тов играет очень важную роль в дифференцировке, однако остается неясным его механизм.

Большая часть мРНК цитоплазмы одинакова по качественному составу в клетках, относящихся к различным стадиям онтогенеза; мРНК необходимы для обеспечения жизнедеятельности клеток и детерминируются генами «домашнего хозяйства», представленными в геноме в виде нескольких нуклеотидных последовательностей со средней частотой повторяемости. Продуктами их активности являются белки, необходимые для сборки клеточных мембран, различных субклеточных структур и т.д. Количество этих мРНК составляет примерно 9/10 от всех мРНК цитоплазмы. Остальные мРНК являются необходимыми для определенных стадий развития, а также различных типов клеток.

При изучении разнообразия мРНК в почках, печени и головном мозге мышей, в яйцеводах и печени кур было обнаружено около 12 000 различных мРНК. Лишь 10-15% были специфичны для какой-либо одной ткани. Они считываются с уникальных нуклеотидных последовательностей тех структурных генов, действие которых специфично в данном месте и в данный момент и которые называются генами «роскоши». Количество их соответствует примерно 1000-2000 генов, ответственных за дифференцировку клеток.

Не все гены, имеющиеся в клетке, вообще реализуются до этапа образования мРНК цитоплазмы, но и эти образовавшиеся мРНК не все и не во всяких условиях реализуются в полипептиды и тем более в сложные признаки. Известно, что некоторые мРНК блокируются на уровне трансляции, будучи в составе рибонуклеопротеиновых частиц - информосом, вследствие чего происходит задержка трансляции. Это имеет место в овогенезе, в клетках хрусталика глаза.

В ряде случаев окончательная дифференцировка связана с «достройкой» молекул ферментов или гормонов или четвертичной структуры белка. Это уже посттрансляционные события. Например, фермент тирозиназа появляется у зародышей амфибий еще в раннем эмбриогенезе, но переходит в активную форму лишь после их вылупления.

Дифференцировка клеток не сводится только к синтезу специфических белков, поэтому применительно к многоклеточному организму эта проблема неотрывна от пространственно-временных аспектов и, следовательно, от еще более высоких уровней ее регуляции, нежели уровни регуляций биосинтеза белка на клеточном уровне. Дифференцировка всегда затрагивает группу клеток и соответствует задачам обеспечения целостности многоклеточного организма.

Лекция № 9.

Количество часов: 2

Дифференциация клеток

1. Дифференцировка клеток

2.

3. Стволовая клетка и дифферон

1. Дифференцировка клеток

Этот вопрос относится к числу наиболее сложных и в тоже время интересных как для цитологии, так и для биологии. Дифференцировка - это процесс возникновения и развития структурных и функциональных различий между первоначально однородными эмбриональными клетками, в результате которого образуются специализированные клетки, ткани и органы многоклеточного организма. Дифференцировка клеток является важнейшей составной частью процесса формирования многоклеточного организма. В общем случае дифференцировка необратима, т.е. высокодифференцированные клетки не могут превращаться в клетки другого типа. Это явление называется терминальной дифференцировкой и присуще преимущественно клеткам животных. В отличие от клеток животных, большинство клеток растений даже после дифференцировки способны переходить к делению и даже вступать на новый путь развития. Такой процесс называется дедифференцировкой. Например, при надрезе стебля некоторые клетки в зоне разреза начинают делиться и закрывают рану, другие вообще могут подвергаться дедифференцировке. Так клетки коры могут превратиться в клетки ксилемы и восстановить непрерывность сосудов в области повреждения. В экспериментальных условиях при культивировании растительной ткани в соответствующей питательной среде клетки образуют каллус. Каллус – это масса относительно недифференцированных клеток, полученная из дифференцированных клеток растений. При соответствующих условиях из одиночных клеток каллуса можно вырастить новые растения. При дифференцировки не происходит потерь или перестройки ДНК. Об этом убедительно свидетельствуют результаты экспериментов по пересадке ядер из дифференцированных клеток в недифференцированные. Так ядро из дифференцированной клетки вводили в энуклеированную яйцеклетку лягушки. В результате из такой клетки развивался нормальный головастик. Дифференцировка в основном происходит в эмбриональный период, а также на первых стадиях постэмбрионального развития. Кроме того, дифференцировка имеет место в некоторых органах взрослого организма. Например, в кроветворных органах стволовые клетки дифференцируются в различные клетки крови, а в гонадах – первичные половые клетки – в гаметы.

2. Факторы и регуляция дифференциации

На первых этапах онтогенеза развитие организма происходит под контролем РНК и других компонентов, находящихся в цитоплазме яйцеклетки. Затем на развитие начинают оказывать влияние факторы дифференцировки.

Выделяют два основных фактора дифференцировки:

1. Различия цитоплазмы ранних эмбриональных клеток, обусловленные неоднородностью цитоплазмы яйца.

2. Специфические влияния соседних клеток (индукция).

Роль факторов дифференцировки заключается в избирательной активации или инактивации тех или иных генов в различных клетках. Активность определенных генов приводит к синтезу соответствующих белков, направляющих дифференциацию. Синтезируемые белки могут блокировать или, напротив, активировать транскрипцию. Первоначально активация или инактивация разных генов зависит от взаимодействия тотипотентных ядер клеток со своей специфической цитоплазмой. Возникновение локальных различий в свойствах цитоплазмы клеток называется ооплазматической сегрегацией. Причина этого явления заключается в том, что в процессе дробления яйцеклетки участки цитоплазмы, различающиеся по своим свойствам, попадают в разные бластомеры. Наряду с внутриклеточной регуляцией дифференцировки с определенного момента включается надклеточный уровень регуляции. К надклеточному уровню регуляции относится эмбриональная индукция.

Эмбриональная индукция – это взаимодействие между частями развивающегося организма, в процессе которого одна часть (индуктор) входит в контакт с другой частью (реагирующей системой) и определяет развитие последней. Причем установлено не только воздействие индуктора на реагирующую систему, но и влияние последней на дальнейшую дифференцировку индуктора.

Под действием какого-либо фактора сначала происходит детерминация.

Детерминацией, или латентной дифференцировкой, называют явление, когда внешние признаки дифференцировки еще не проявились, но дальнейшее развитие ткани уже происходит независимо от фактора, вызвавшего их. Клеточный материал считают детерминированным со стадии, на которой он впервые при пересадке в новое место развивается в орган, который из него образуется в норме.

3. Стволовая клетка и дифферон

К числу перспективных направлений биологии XXI века относится изучение стволовых клеток. Сегодня исследования стволовых клеток по значимости сопоставимо с исследованиями по клонированию организмов. По мнению ученых применение стволовых клеток в медицине позволит лечить многие "проблемные" заболевания человечества (бесплодие, многие формы рака, диабет, рассеянный склероз, болезнь Паркинсона и др.).

Стволовая клетка – это незрелая клетка, способная к самообновлению и развитию в специализированные клетки организма.

Стволовые клетки подразделяют на эмбриональные стволовые клетки (их выделяют из эмбрионов на стадии бластоцисты) и региональные стволовые клетки (их выделяют из органов взрослых особей или из органов эмбрионов более поздних стадий). Во взрослом организме стволовые клетки находятся, в основном, в костном мозге и, в очень небольших количествах, во всех органах и тканях.

Свойства стволовых клеток. Стволовые клетки самоподдерживаются, т.е. после деления стволовой клетки одна клетка остается в стволовой линии, а вторая дифференцируются в специализированную. Такое деление называется несимметричным.

Функции стволовых клеток. Функция эмбриональных стволовых клеток заключается в передаче наследственной информации и образовании новых клеток. Основная задача региональных стволовых клеток - восстановление потерь специализированных клеток после естественной возрастной или физиологической гибели, а также в аварийных ситуациях.

Дифферон – это последовательный ряд клеток, образовавшийся из общего предшественника. Включает стволовые, полустволовые и зрелые клетки.

Например, стволовая клетка, нейробласт, нейрон или стволовая клетка, хондробласт, хондроцит и т. д.

Нейробласт - малодифференцированная клетка нервной трубки, превращающаяся в дальнейшем в зрелый нейрон.

Нейрон - клетка, являющаяся структурной и функциональной единицей нервной системы.

Хондробласт - малодифференцированная клетка хрящевой ткани, превращающаяся в хондроцит (зрелая клетка хрящевой ткани).

Дифференцировка представляет собой созидательный процесс направленного изменения, в результате которого из общих черт, присущих всем клеткам, возникают структуры и функции, свойственные тем или иным специализированным клеткам. Процесс дифференцировки сводится к приобретению (или утрате) различными клетками структурных или функциональных особенностей, в результате чего эти клетки становятся специализированными для различных видов активностей, свойственных живым организмам, и формируют соответствующие органы в организме. У человека, например, растущие клетки в результате последовательных изменений в процессе дифференцировки превращаются в различные клетки, из которых состоит человеческий организма клетка нервной, мышечной,пищеварительной, выделительной, сердечно-сосудистой, дыхательной и других систем.[ ...]

При дифференцировке, несмотря на сохранение всей наследственной информации, клетки утрачивают способность к делению. При этом чем больше специализирована клетка, тем труднее изменить (а иногда невозможно) направление ее дифференцировки, что определяется ограничениями, накладываемыми на нее организмом в целом.[ ...]

После дифференцировки в первичном лимфоидном органе часть лимфоцитов с током крови переносится во вторичные лимфоидные органы (лимфатические узлы, селезенка, аппендикс, миндалины, аденоиды и пейеровы бляшки тонкого кишечника). Именно здесь Т-клетки и В-клетки реагируют с антигенами. Т-лимфоциты первоначально распознают чужеродный антиген, а затем становятся хранителями иммунологической памяти и переносчиками этой информации антителообразующими клетками. В-лимфоциты образуются в огромном количестве (ежедневно по нескольку миллионов). Они активируются Т-клетками и дифференцируются или трансформируются в плазматические клетки, непосредственно образующие антитела (растворимые иммуноглобулины) против распознанных антигенов.[ ...]

Молодые клетки каллуса могут дифференцироваться в клетки трахеид и элементы флоэмы. И в этих случаях большое значение имеет отношение ауксин/цитокинин и концентрация сахарозы. Ауксин в сочетании с сахарозой индуцирует формирование проводящих пучков, причем низкий уровень сахарозы благоприятствует образованию ксилемы, а высокий - флоэмы. Значение гормонального фактора (ауксина) для дифференцировки проводящих пучков иллюстрируется одним экспериментом Камю (Camus). Если в каллус вводятся почки, то ниже почек образуются тяжи проводящих пучков из клеток каллуса. Очевидно, что образование проводящих пучков индуцируется почкой-это можно доказать, поместив между почкой и каллусом пластинку целлофана: легко проницаемый целлофан не препятствует индукции (рис. 16.1).[ ...]

Развитие (дифференцировка) зародышевых листков в ходе эмбриогенеза сопровождается тем, что из них формируются различные ткани и органы. В частности, из эктодермы развиваются эпидермис кожи, ногти и волосы, сальные и потовые железы, нервная система (головной мозг, спинной мозг, ганглии, нервы), рецепторные клетки органов чувств, хрусталик глаза, эпителий рта, носовой полости и анального отверстия, зубная эмаль. Из энтодермы развиваются эпителий пищевода, желудка, кишек, желчного пузыря, трахеи, бронхов, легких, мочеиспускательного канала, а также печень, поджелудочная железа, щитовидная, паращитовидная и зобная железы. Из мезодермы развиваются гладкая мускулатура, скелетные и сердечные мышцы, дерма, соединительная ткань, кости й хрящи, дентин зубов, кровь и кровеносные сосуды, брыжейка, почки, семенники и яичники. У человека первыми обособляются головной и спинной мозг. Через 26 дней после овуляции длина человеческого зародыша составляет около 3,5 мм. При этом уже видны зачатки рук, но зачатки ног только вступают в развитие. Через 30 дней после овуляции длина зародыша равна уже 7,5 мм. В это время уже можно различить сегментацию зачатков конечностей, глазные бокалы, полушария головного мозга, печень, желчный пузырь и даже разделение сердца на камеры.[ ...]

Точно так лишь клетки эпидермиса синтезируют кератин. Поэтому давно возникли вопросы о генетической идентичности ядер соматических клеток и о контрольных механизмах развития оплодотворенных яйцеклеток как пререквизита в познании механизмов, лежащих в основе дифференцировки клеток.[ ...]

Установлено, что дифференцировка возникает не в результате утраты или добавления генетической информации. Дифференцировка - это не результат изменения генетической потенции клетки, а дифференциальное выражение этих потенций под влиянием среды, в которой находятся клетка и ее ядро. Дифференцировка клеток - это в сущности изменение состава клеточных белков - набора ферментов, и обусловлена она тем, что в разных клетках из общего количества генов функционируют разные наборы ген, определяющие синтез различных наборов белков. Избирательное выражение информации, закодированной в генах данной клетки, достигается путем активации или репрессии процесса транскрипции (считывания) этих генов, т.е. путем избирательного синтеза первичного продукта генов - РНК, содержащей ту информацию, которую следует передать в цитоплазму.[ ...]

Процессы, происходящие во время дифференцировки клеток, в конце концов завершаются, и клетка достигает стационарного состояния зрелости, в котором непрерывно поддерживается ее метаболизм (конечно, за исключением таких клеток, как мертвые клетки ксилемы). Видимыми признаками дифференцированного состояния являются различия в строении клеточных стенок и некоторых цитоплазматических органелл, таких, как пластиды. Если вспомнить, что ряд тканей специфически приспособлен к выполнению определенных функций (фотосинтез, -секреция или запасание веществ), то становится очевидным, что дифференцировка должна также затрагивать некоторые стороны метаболизма. Такая дифференцировка почти наверняка должна быть связана с различиями в синтезе ферментов, что в свою очередь свидетельствует о сохранении между клетками различий в активности генов даже в зрелом состоянии.[ ...]

В некоторых типах тканей в процессе дифференцировки происходит раннее отмирание определеных клеток, таких, как сосудистые элементы ксилемы, тогда как соседние клетки паренхимы могут оставаться живыми в течение многих лет. Изменения, происходящие в протопласте при дифференцировке сосудистого элемента, могут почти в точности соответствовать изменениям, которые позднее происходят в клетках стареющего органа, например листа. Однако процесс вакуолизации и увеличения размеров не обязательно включает дегенеративные изменения, поскольку клетки паренхимы могут жить в течение многих лет, например клетки сердцевины и сердцевинных лучей некоторых древесных растений. Таким образом, представляется вероятным, что у травянистых растений многие типы дифференцированных растительных клеток редко полностью используют потенциальные жизненные возможности, и старение и отмирание происходит не по причине действия факторов, присущих самим клеткам, а в силу условий, преобладающих внутри органа или организма в целом. Например, постепенное старение листьев вызывается по-видимому, конкуренцией между зрелыми листьями и растущими зонами побега, и если лист удалить и индуцировать у него образование корней на черешке, то он проживет гораздо дольше, чем в том случае, если он останется связанным с материнским растением (с. 429). Следовательно, скорость старения органов растения часто находится под контролем всего растения, а не просто определяется внутренне присущими свойствами клеток этого органа. Однако определенным органам, по-видимому, свойствен «прирожденный» процесс старения, который не регулируется целым растением; так, цветки и плоды стареют независимо от того, остаются ли они на материнском растении или нет.[ ...]

Прокамбий развивается акропетально, и дифференцировка ксилемы и флоэмы идет в одном и том же направлении. Первые видимые в центральном цилиндре изменения можно обнаружить, когда за счет радиального увеличения размеров отдельных клеток намечаются будущие ксилсмпые группы. Таким образом, очевидно, что гистогенез может происходить на очень небольшом расстоянии от самой промеристемы (рис. 2.18).[ ...]

Фаза дифференциации. На этой фазе процесс дифференцировки уже проявляется в определенных внешних признаках, т. е. меняются форма и внешняя структура клетки. Протоплазма почти целиком расходуется на утолщение клеточной оболочки. Вновь образовавшиеся слои фибрилл целлюлозы накладываются на старые (аппозиция).[ ...]

Многоклеточные формы возникли после того, как клетка проделала длительный и сложный путь развития в качестве самостоятельного организма. В современных растениях сохранились следы этой истории. Переход от одноклеточного к многоклеточному состоянию сопровождался потерей индивидуальности и связанными с этим изменениями в структуре и функциях клетки. Внутри талломов многоклеточных водорослей складываются качественно иные отношения, чем между клетками одноклеточных водорослей. С возникновением многоклеточности связаны дифференцировка и специализация клеток в талломе, что следует рассматривать как первый шаг на пути становления тканей (г и с т о-г е н е з) и органов (органогенез). В зависимости от расположения клеток в талломе многоклеточные водоросли могут быть представлены нитчатыми или пластинчатыми формами.[ ...]

До сих пор мы обсуждали главным образом влияние на дифференцировку внутриклеточных факторов. Теперь мы рассмотрим другую ситуацию, а именно те случаи, когда характер дифференцировки зависит от внеклеточных факторов, например от влияния гормонов. По определению гормонами называются ростовые вещества, которые покидают синтезирующие их клет-, ки и влияют на другие клетки.[ ...]

Развитие любого растения включает такие процессы, как рост и дифференцировка. Термин рост характеризует количественные изменения, происходящие во время развития, иными словами, рост можно определить как процесс необратимого изменения размеров клетки, органа или всего организма. Внешняя форма органа представляет собой в первую очередь результат дифференциального роста’ вдоль определенных осей. Однако в процессе развития появляются не только количественные различия в числе и расположении клеток, составляющих те или иные органы, но между клетками, тканями и органами возникают также качественные различия, для характеристики которых применяется термин дифференцировка. Дифференцировка на клеточном и тканевом уровнях хорошо известна и служит главным образом предметом изучения анатомии растений. Кроме того, мы можем говорить о дифферсн-дировкс тела растения на побег и корень, а переход от вегетативной к репродуктивной фазе можно рассматривать как еще один пример дифференцировки. Следовательно, мы будем пользоваться термином дифференцировка в очень широком смысле, обозначая им любую ситуацию, в которой меристема« тические клетки дают начало двум или более типам клеток, тканей или органов, качественно отличающихся друг от друга.[ ...]

У многоклеточных организмов, в отличие от одноклеточных, рост и дифференцировка одной клетки координированы с ростом и развитием других клеток, т.е. между разными клетками происходит обмен информацией. Таким образом, в этих организмах развитие зависит от интегрированного роста и дифференцировки всех клеток и именно такая интеграция обеспечивает гармоничное развитие организма как целого.[ ...]

Обычно созревание включает вакуолизацию и увеличение, размеров клетки; некоторые аспекты этого процесса уже были рассмотрены ранее (с. 17-21). В процессе созреваиня клетки могут претерпевать как относительно небольшие.структурные изменения, например при образовании паренхимной ткани, так и значительные - при формировании тканей ксилемы и флоэмы. Именно различные пути созревания клеток приводят к их дифференцировке..[ ...]

Развитие - это качественные изменения организмов, которые определяются дифференцировкой клеток и морфогенезом, а также биохимическими изменениями в клетках и тканях, обеспечивающими в ходе онтогенеза прогрессивные изменения индивидов. В рамках современных представлений развитие организма понимают в качестве процесса, при котором структуры, образовавшиеся ранее, побуждают развитие последующих структур. Процесс развития детерминирован генетически и теснейшим образом связан со средой. Следовательно, развитие определяется единством внутренних и внешних факторов. Онтогенез в зависимости от характера развития организмов типируют на прямой и непрямой, в связи с чем различают прямое и непрямое развитие.[ ...]

Имеются сведения о том, что холинэстеразная активность обнаруживается даже у эмбриона и в клетках алейронового слоя семян пшеницы, овса, тыквы. Она отмечается на стадии дифференцировки корней и стеблей, в эпидермисе, флоэме, камбии и апикальных меристемах этих растений.[ ...]

С ростом рыбы увеличиваются размеры семенников. Процесс этот сопровождается их внутренней дифференцировкой, приводящей к образованию в гонаде у пластиножаберных зон семенных ампул или-фолликулов, в которых сперматогониаль-ные клетки проходят соответствующие фазы развития.[ ...]

Общим признаком воздействия динитроанилинов является опухолевое перерождение кончиков корней. Клетки многоядерные, небольшого размера, в паренхиме коры гипертрофированы, имеют тонкие стенки. Процессы дифференцировки неупорядочены, ксилема чрезмерно утолщается. Динитроанилины подавляют митоз, действуя в тех фазах деления, в которых должны образоваться и функционировать микротрубочки (метафаза, анафаза, телофаза). Волокна веретена состоят из микротрубочек. При нормальном делении микротрубочки перемещают хромосомы, упорядочивая их в метафазе определенным образом, и именно на стадии метафазы динитроанилины нарушают этот процесс. По своему действию они напоминают колхицин, поскольку также препятствуют полимеризации тубулина в микротрубочкн. Однако по точке приложения действия они отличаются от колхицина. Микротрубочки играют определенную роль в переносе веществ, необходимых для строительства клеточной стенки, в размещении ее скелетных элементов.[ ...]

Развитие одноклеточной зиготы в многоклеточный организм происходит в результате процессов роста и дифференцировки клеток. Рост представляет собой увеличение массы организма, происходящее в результате ассимиляции вещества. Он может быть связан с увеличением как размеров клетки, так и их числа; при этом исходные клетки извлекают из окружающей среды необходимые им вещества и используют их на увеличение своей массы или на построение новых подобных себе клеток. Так, зигота человека составляет примерно 110 бг, а новорожденный ребенок весит в среднем 3200г, т.е. за время внутриутробного развития происходит увеличение массы в миллиарды раз. С момента рождения и до достижения средних для взрослого человека размеров масса увеличивается еще в 20 раз.[ ...]

Итак, генетическая информация, необходимая для нормального развития эмбриона, не теряется в течение дифференцировки клеток. Другими словами, соматические клетки обладают свойством, получившим название тотипотентности, т. е. в их геноме содержится вся информация, полученная ими от оплодотворенной яйцеклетки, давшей им начало в результате дифференциации. Наличие этих данных с несомненностью означает, что дифференциация клеток подвержена генетическому контролю.[ ...]

Для оценки состояния Т-клеточного звена иммунной системы использовали фракционированные мононуклеарные клетки. Методом розетко-образования с эритроцитами барана (Е-РОК) определяли общее число Т-лимфоцитов (Петров и др., 1976; Ярилин, 1985; Лебедев, Понякина, 1990; Joundal et al., 1972).[ ...]

Не следует забывать, что пока идентифицировано только пять основных типов эндогенных гормонов, а за время жизненного цикла в дифференцировке растения должно участвовать большое число генов, активируемых в соответствующих клетках и в правильной последовательности. Поэтому трудно представить, как такое небольшое число гормонов может регулировать активность столь большого числа генов. Однако, возможно, что только определенные «главные» гены регулируют основные пути развития, а им подчиняется большое число генов, активирующихся на последующих стадиях дифференцировки. В самом деле поразительно, что при дифференцировке, например при развитии листа или цветка, часто происходит координированная экспрессия целых блоков генов. Число основных этапов развития высшего растения, в регуляции которых участвуют «главные» гены, совсем невелико, и не исключено, что взаимодействие между уже известными гормонами может играть важную роль в регуляции некоторых из этих этапов.[ ...]

Очевидно, что возможности развития большинства клеток каллуса каким-то образом ограничены и дальнейшие ограничения накладываются при дифференцировке проводящей ткани, стеблевых почек и зачатков корней. Так, деление клеток недифференцированного каллуса ничем не ограничено, но когда образуется почка, ее клетки, становясь частью листового прп-мордия, могут делиться только в определенных плоскостях, и до тех пор, пока они остаются частью листа, они не способны к неограниченному делению. Мы не знаем, каков механизм этого ограничения у клеток, входящих в состав ткани, но возможно, что регуляция поведения каждой клетки осуществляется соседними клетками через систему плазмодесм, соединяющих протопласты соседних клеток.[ ...]

Высшие растения - это многоклеточные организмы, построенные из большого числа разнообразных клеток, тканей и органов. Каждая отдельная клетка имеет свои регуляторные системы, управляющие процессами жизнедеятельности на внутриклеточном уровне. Кроме того, растению необходимы межклеточные регуляторные системы, которые координируют различные процессы - рост, дифференцировку, обмен веществ, размножение, движение - на уровне организма в целом.[ ...]

На способность харовых водорослей генерировать ПД указывалось еще в начале прошлого века. Как уже отмечалось, благодаря своим размерам, четкой дифференцировке внутриклеточных компартментов и т. д. они стали удобным объектом и в исследованиях, связанных с изучением характера передачи электрической информации между клетками.[ ...]

Коль скоро группа клеток вступила на какой-то путь развития, она обычно следует по этому «нормальному» пути до полного его завершения, и крайне редко клетки возвращаются к более ранней стадии развития или переходят на какой-либо другой путь. Так, листовые примордии не станут почками или стеблями, хотя иногда при формировании цветка могут возникать, аномалии развития, например возврат к вегетативной верхушке, по такие случаи сравнительно редки, поэтому считают, что на определенных критических стадиях те или иные части организма становятся «детерминированными» в отношении их дальнейшей дифференцировки. Мы уже приводили пример такой детерминации при развитии листовых примордиев (рис. 2.12).[ ...]

Сейчас очевидно, что каждый из классов фитогормонов вызывает широкий спектр ответных реакций в различных частях растения, и в общем специфический тип дифференцировки каждого органа, по-видимому, определяется «препрограммирова-нием» самих клеток-мишеней или тканей. Мы пока не знаем, что запрограммировано в этих клетках-мишенях, но ответная реакция на гормональный сигнал может обусловливаться природой рецепторов гормонов, образующихся в процессе развития клетки. Итак, во многих случаях специфический тип дифференцировки, который приводит в действие гормон, определяется не гормоном, а «программированием» или «компетенцией» клеток-мишеней.[ ...]

Таким образом, апексы побега и корня ведут себя так, как если бы они были детерминированы. На первый взгляд это противоречит общепринятому представлению, что клетки меристем побега и корня недифференцированы и что различные типы дифференцировки этих двух органов определяются структурой и организацией самих меристем.[ ...]

Одновременно с этими внутренними изменениями наружная твердая стенка ооспоры расщепляется на ее вершине на пять зубцов, давая выход проростку, возникающему из центральной клетки (рис. 269, 3). Первое деление центральной клетки происходит поперечной перегородкой, перпендикулярной к ее длинной оси, и приводит к образованию двух функционально различных клеток. Из одной, более крупной клетки в дальнейшем образуется стеблевой побег, который на начальной стадии развития называют предростком, из другой, меньшей клетки - первый ризоид. Оба они растут путем поперечных клеточных делений. Предросток растет вверх и довольно быстро зеленеет, заполняясь хлоропластами, первый ризоид направляется вниз и остается бесцветным (рис. 269, 4). После ряда клеточных делений, сообщающих им строение однорядных нитей, происходит их дифференцировка на узлы и междоузлия, и дальнейший их верхушечный рост протекает уже так, как было описано выше для стебля. Из узлов предростка возникают вторичные предростки, мутовки листьев и боковые ветви стебля, из узлов первого ризоида - вторичные ризоиды и их мутовчатые волоски. Таким путем и формируется таллом, состоящий из нескольких стеблевых побегов в верхней части и нескольких сложных ризоидов в нижней части (рис. 2G9, 5).[ ...]

Неспособность корней синтезировать некоторые витамины п тканей сердцевины табака синтезировать ауксины и цитокипи-пы является достаточно сильным доводом в пользу того, что дифференцировка клеток связана с активацией одних генов и подавлением других. Было бы интересно узнать, могут ли ме-ристематические клетки верхушки стебля табака синтезировать цитокинины. Если это так, то очевидно, что один из процессов, происходящих при днффереицировке клеток стебля, - подавление активности ферментов, ответственных за синтез ауксина и цитокинииа. Действительно, такими изменениями в биосинтетической способности можно объяснить переход от деления клеток к их растяжению, происходящий в апикальных участках как стебля, так и корня.[ ...]

Сюда входят одноклеточные и колониальные организмы. У большинства колонии образуются за счет выделения значительных масс слизи, реже путем слипания плотно сомкнутых клеток. Располагаются клетки в колониях беспорядочно или правильно, очень редко нитевидно. Клетки в большинстве без дифференцировки на основание и вершину. Размножаются хроококковые делением клеток, реже нанноцитами, плано-кокками и спорами. Класс охватывает 35 родов, неравномерно распределяющихся на 2 порядка.[ ...]

В основе организации всего научного материала лежит представление авторов о росте растения как о сложном процессе, связанном с увеличением размеров (ростом) клеток, тканей и оргайов, а также с их дифференцировкой. Авторы рассматривают рост как необратимые количественные изменения в клетках тканей и органов, тогда как диффереицировку- как качественные изменения, наблюдаемые в процессе развития.[ ...]

Сравнительно больше известно о факторах, регулирующих.активность камбия древесных растений средней полосы. Этим растениям свойственны сезонные изменения в активности клеточного деления сосудистого камбия как в побеге, так и в корне, и характер дифференцировки производных камбия различается в зависимости от времени года. Зимой камбий таких деревьев не активен, а весной снова начинается клеточное деление и новообразованные клетки дифференцируются в ксилему и флоэму.[ ...]

В 1967 г. И. Кроншав и К- Эсау в дифференцирующихся элементах флоэмы табака (№соИапа) обнаружили особые трубочки, представляющие собой глобулярные белки, названные Р-бел-ками. По своим морфологическим особенностям они схожи с микротрубочками. Диаметр трубочки Р-белка в клетках табака достигает 23 нм, в клетках тыквы- 18-23 нм; толщина их стенок составляет 6-7 нм. После завершения дифференцировки ситовидные элементы трубочек Р-белка, не исчезая полностью, распадаются на отдельные исчерченные нити. Подобно микротрубочкам трубочки Р-белка соединены между собой нитевидными перемычками.[ ...]

Повышенная чувствительность мужских половых клеток ранних фаз развития к действию рентгеновских лучей свойственна многим видам животных от дрозофилы (Ватти, 1965, 1966; Sobéis, 1966) до млекопитающих (Wang et al., 1960). Реакция половых клеток на рентгеновское облучение у будущих самок и самцов горбуши Oncorhynchus gorbuscha обнаруживает определенные различия еще до начала у них видимого процесса дифференцировки пола (Персов, 1969).[ ...]

Последовательные стадии развития можно рассматривать как процесс, при котором в различные критические точки времени и пространства происходит переключение на альтернативные пути дальнейшего развития. Это переключение может наблюдаться на клеточном уровне, например, когда две дочерние клетки, возникающие в результате неэквивалентного деления, дифференцируются по-разному; она может также происходить при дифференцировке органов или даже апекса побега как целого, например при переходе от вегетативной фазы развития к цветению. Далее мы уже видели, что если орган, такой, как зачаток листа, прошел определенную стадию развития, то он необратимо «детерминируется» как лист (в отличие от почки) п обычно не может превратиться ни в одну другую структуру (с. 53-54).[ ...]

Еще со времени Ю. Сакса рост клеток принято делить на трв фазы: эмбриональпуто, растяжения, дифферепцировки (рис. 59). Такое разделение носит условный характер. За последнее время внесены изыепения в само понимание основных особенностей, характеризующих эти фазы роста. Бели прежде считалось, что процесс деления клетки происходит лишь в эмбриональную фагу роста, то сейчас показано, что клетки могут иногда делиться и в фазу растяжения. Важно, что дифференцировка клетки отнюдь не является особенностью только третьей, последней фазы роста. Дифференцировка клеток, в смысле появления п накопления внутренних и физиологических различии между ними, проходит па протяжении всех трех фаз и является важной особенностью роста клеток. В третьей фазе эти внутренние физиологические различия лишь получают внешнее морфологическое выражение. Все же ряд существенных отличий между фазами роста имеется, и физиологи продолжают рассматривать их отдельно.[ ...]

Кроме биохимических изменений на молекулярном уровне и структурных изменений, видимых в обычный световой микроскоп, с помощью электронного микроскопа можно обнаружить изменения, происходящие на ультраструктурном уровне. Однако есть и исключения, например в клетках ситовидных трубок во время дифференцировки большинство органелл подвергается дезинтеграции. Наибольшая вариабельность характерна для пластид. Их структура чрезвычайно разнообразна в зависимости от того, находятся ли они в тканях листа, запасающих тканях, плодах (например, томата) или, частях цветка, таких, как лепестки.[ ...]

Половое размножение является наиболее эффективным путем воспроизводства организмов, дающим возможность «перетасовки» и комбинирования генов. Предполагают, что оно развилось из бесполого, возникнув около 1 млрд лет назад, причем первые этапы в этом процессе были связаны с усложнением в развитии гамет. Примитивные гаметы характеризовались недостаточной морфологической дифференцировкой, в результате чего для многих организмов ведущей была изогамия (от греч. isos - равный, gamos - брак), когда половые клетки были подвижными изогаметами, еще не дифференцированными на мужские и женские формы. Изогамия встречается у ряда видов простейших.[ ...]

В процессе развития происходит постепенная диффереици-ровка органов и тканей, что приводит к возникновению большого разнообразия типов клеток. Однако не все гены, входящие в состав генома, активны в каждый данный момент и в каждой данной части растения. Так, гены, контролирующие развитие цветков, обычно не экспрессируются ни у зародышей, ни во время чисто вегетативной фазы развития. Вместе с тем мы знаем, что клетки таких вегетативных органов, как лист, содержат гены для развития цветков, поскольку из клеток листьев некоторых видов могут регенерировать новые растения, способные к цветению. Следовательно, дифференцировка у растений не связана с генетическими (т. е. наследственными) различиями между ядрами различного типа клеток и тканей. В таком случае она должна определяться различиями в экспрессии генов в тех или иных частях растения или на тех или иных стадиях его жизненного цикла.[ ...]

Ауксин регулирует не только активацию камбия, по и диф-ферендировку его производных. Известно также, что ауксин является не единственным гормональным регулятором активности камбия и диффереицировки проводящей ткани. Наиболее просто н наглядно это было показано в опытах, в которых ранней весной до распускания почек брали веточки растений с рас-сеяннопоровой древесиной, удаляли с них почки и через верхнюю раневую поверхность вводили в эти сегменты стебля ростовые гормоны в ланолиновой пасте или в виде водного раствора. Примерно через 2 пед приготовляли срезы стебля для наблюдения за активностью камбия. Без введения гормонов клетки камбия не делились, по в варианте с ИУК можно было наблюдать деление клеток- камбия и дифференцировку новых элементов ксилемы, хотя оба эти процесса шли не очень активно (рис. 5.17). При введении только ГА3 клетки камбия делились, но производные клетки на его внутренней стороне (ксилема) не дифференцировались и сохраняли протоплазму. Однако при тщательном наблюдении можно было заметить, что в ответ на действие ГА3 образуется некоторое количество новой флоэмы с дифференцированными ситовидными трубками. Одновременная обработка ИУК и ГА3 приводила к активации клеточного деления в камбии, и образовывались нормально дифференцированные ксилема и флоэма. Измеряя толщину новой ксилемы и флоэмы, можно количественно подойти к изучению взаимодействия ауксина, гиббереллииа и других регуляторов (рис. 5.18). Такие опыты позволяют предположить, что концентрация ауксина и гиббереллииа регулирует не только скорость клеточного деления в камбии, но и влияет на соотношение инициальных клеток ксилемы и флоэмы. Сравнительно высокая концентрация ауксина благоприятствует образованию ксилемы, тогда как при высоких концентрациях гиббереллииа образуется больше флоэмы.[ ...]

Зиберс вырезал из молодых гипокотилей маленькие кусочки межпучковой ткани прежде, чем в этой ткани появлялись какие-либо признаки образования межпучкового камбия. Эти кусочки оп перевертывал и снова вставлял в гипокотилп. Последующее исследование показало, что в таких перевернутых кусочках ткани закладывался межпучковый камбий, по тип днффе-ренцировки был необычен, так как ксилема образовывалась ¿наружи, а флоэма внутри от камбия. Кроме того, этот межпучковый камбий не соединялся с камбием первичных проводящих пучков. Эти наблюдения показали, что, хотя исходное цельное кольцо прокамбия в верхушке побега (с. 57-58) разделяется на отдельные тяжи (каждый из которых развивается в первичный проводящий пучок), зоны между тяжами могут легко превращаться в камбий, даже если клетки этих зон морфологически неотличимы от окружающей основной ткани. Помимо этого, нормальный характер дифференцировки производных камбия (т. е. образование ксилемы внутри и флоэмы снаружи), по-видимому, определяется потенциями самих клеток, а не внешними факторами, такими, как гормоны, хотя последние, особенно ИУК и гиббереллины, необходимы для деления клеток камбия и их последующей дифференцировки.