Урок «Растворение. Растворимость веществ в воде

Раствором называется термодинамически устойчивая гомогенная (однофазная) система переменного состава, состоящая из двух или более компонентов (химических веществ). Компонентами, составляющими раствор, являются растворитель и растворенное вещество. Обычно растворителем считается тот компонент, который в чистом виде существует в таком же агрегатном состоянии, что и полученный раствор (например, в случае водного раствора соли растворителем является, конечно, вода). Если же оба компонента до растворения находились в одинаковом агрегатном состоянии (например, спирт и вода), то растворителем считается компонент, находящийся в большем количестве.

Растворы бывают жидкими, твердыми и газообразными.

Жидкие растворы – это растворы солей, сахара, спирта в воде. Жидкие растворы могут быть водными и неводными. Водные растворы – это растворы, в которых растворителем является вода. Неводные растворы – это растворы, в которых растворителями являются органические жидкости (бензол, спирт, эфир и т.д.). Твёрдые растворы – сплавы металлов. Газообразные растворы – воздух и другие смеси газов.

Процесс растворения . Растворение – это сложный физико-химический процесс. При физическом процессе происходит разрушение структуры растворяемого вещества и распределение его частиц между молекулами растворителя. Химический процесс – это взаимодействие молекул растворителя с частицами растворенного вещества. В результате этого взаимодействия образуются сольваты. Если растворителем является вода, то образующиеся сольваты называются гидратами. Процесс образования сольватов называется сольватацией, процесс образования гидратов – гидратацией. При упаривании водных растворов образуются кристаллогидраты – это кристаллические вещества, в состав которых входит определенное число молекул воды (кристаллизационная вода). Примеры кристаллогидратов: CuSO 4 . 5H 2 O – пентагидрат сульфата меди (II); FeSO 4 . 7H 2 O – гептагидрат сульфата железа (II).

Физический процесс растворения идёт с поглощением энергии, химический – с выделением . Если в результате гидратации (сольватации) выделяется больше энергии, чем ее поглощается при разрушении структуры вещества, то растворение – экзотермический процесс. Выделение энергии происходит при растворении NaOH, H 2 SO 4 , Na 2 CO 3 , ZnSO 4 и других веществ. Если для разрушения структуры вещества надо больше энергии, чем её выделяется при гидратации, то растворение – эндотермический процесс. Поглощение энергии происходит при растворении в воде NaNO 3 , KCl, NH 4 NO 3 , K 2 SO 4 , NH 4 Cl и некоторых других веществ.

Количество энергии, которое выделяется или поглощается при растворении, называется тепловым эффектом растворения .

Растворимостью вещества называется его способность распределяться в другом веществе в виде атомов, ионов или молекул с образованием термодинамически устойчивой системы переменного состава. Количественной характеристикой растворимости является коэффициент растворимости , который показывает, какая максимальная масса вещества может раствориться в 1000 или 100 г воды при данной температуре. Растворимость вещества зависит от природы растворителя и вещества, от температуры и давления (для газов). Растворимость твердых веществ в основном увеличивается при повышении температуры. Растворимость газов с повышением температуры уменьшается, но при повышении давления увеличивается.

По растворимости в воде вещества делят на три группы:

1. Хорошо растворимые (р.). Растворимость веществ больше 10 г в 1000г воды. Например, 2000 г сахара растворяется в 1000 г воды, или в 1 л воды.

2. Малорастворимые (м.). Растворимость веществ от 0,01 г до 10 г в 1000 г воды. Например, 2 г гипса (CaSO 4 . 2 H 2 O) растворяется в 1000 г воды.

3. Практически нерастворимые (н.). Растворимость веществ меньше 0,01 г в 1000 г воды. Например, в 1000 г воды растворяется 1,5 . 10 -3 г AgCl.

При растворении веществ могут образоваться насыщенные, ненасыщенные и пересыщенные растворы.

Насыщенный раствор – это раствор, который содержит максимальное количество растворяемого вещества при данных условиях. При добавлении вещества в такой раствор вещество больше не растворяется.

Ненасыщенный раствор – это раствор, который содержит меньше растворяемого вещества, чем насыщенный при данных условиях. При добавлении вещества в такой раствор вещество еще растворяется.

Иногда удается получить раствор, в котором растворенного вещества содержится больше, чем в насыщенном растворе при данной температуре. Такой раствор называется пересыщенным. Этот раствор получают при осторожном охлаждении насыщенного раствора до комнатной температуры. Пересыщенные растворы очень неустойчивы. Кристаллизацию вещества в таком растворе можно вызвать путем потирания стеклянной палочкой стенок сосуда, в котором находится данный раствор. Этот способ применяется при выполнении некоторых качественных реакций.

Растворимость вещества может выражаться и молярной концентрацией его насыщенного раствора (п.2.2).

Константа растворимости. Рассмотрим процессы, возникающие при взаимодействии малорастворимого, но сильного электролита сульфата бария BaSO 4 с водой. Под действием диполей воды ионы Ba 2+ и SO 4 2 - из кристаллической решетки BaSO 4 будут переходить в жидкую фазу. Одновременно с этим процессом под влиянием электростатического поля кристаллической решетки часть ионов Ba 2+ и SO 4 2 - вновь будет осаждаться (рис.3). При данной температуре в гетерогенной системе, наконец, установится равновесие: скорость процесса растворения (V 1) будет равна скорости процесса осаждения (V 2), т.е.

BaSO 4 ⇄ Ba 2+ + SO 4 2 -

твёрдая раствор

Рис. 3. Насыщенный раствор сульфата бария

Раствор, находящийся в равновесии с твердой фазой BaSO 4 , называется насыщенным относительно сульфата бария.

Насыщенный раствор представляет собой равновесную гетерогенную систему, которая характеризуется константой химического равновесия:

, (1)

где a (Ba 2+) – активность ионов бария; a(SO 4 2-) – активность сульфат-ионов;

a (BaSO 4) – активность молекул сульфата бария.

Знаменатель этой дроби – активность кристаллического BaSO 4 – является постоянной величиной, равной единице. Произведение двух констант дает новую постоянную величину, которую называют термодинамической константой растворимости и обозначают К s °:

К s ° = a(Ba 2+) . a(SO 4 2-). (2)

Эту величину раньше называли произведением растворимости и обозначали ПР.

Таким образом, в насыщенном растворе малорастворимого сильного электролита произведение равновесных активностей его ионов есть величина постоянная при данной температуре.

Если принять, что в насыщенном растворе малорастворимого электролита коэффициент активности f ~1, то активность ионов в таком случае можно заменить их концентрациями, так как а(X ) = f (X ) . С(X ). Термодинамическая константа растворимости К s ° перейдет в концентрационную константу растворимости К s:

К s = С(Ba 2+) . С(SO 4 2-), (3)

где С(Ba 2+) и С(SO 4 2 -) – равновесные концентрации ионов Ba 2+ и SO 4 2 - (моль/л) в насыщенном растворе сульфата бария.

Для упрощения расчётов обычно пользуются концентрационной константой растворимости К s , принимая f (Х ) = 1 (приложение 2).

Если малорастворимый сильный электролит образует при диссоциации несколько ионов, то в выражение К s (или К s °) входят соответствующие степени, равные стехиометрическим коэффициентам:

PbCl 2 ⇄ Pb 2+ + 2 Cl - ; K s = С (Pb 2+) . С 2 (Cl -);

Ag 3 PO 4 ⇄ 3 Ag + + PO 4 3 - ; K s = С 3 (Ag +) . С (PO 4 3 -).

В общем виде выражение концентрационной константы растворимости для электролита A m B n ⇄ m A n+ + n B m - имеет вид

K s = С m (A n+) . С n (B m -),

где С - концентрации ионов A n+ и B m - в насыщенном растворе электролита в моль/л.

Величиной K s принято пользоваться только в отношении электролитов, растворимость которых в воде не превышает 0,01 моль/л.

Условия образования осадков

Предположим, с - фактическая концентрация ионов трудно растворимого электролита в растворе.

Если С m (A n +) . С n (B m -) > K s , то произойдет образование осадка, т.к. раствор становится пересыщенным.

Если С m (A n +) . С n (B m -) < K s , то раствор является ненасыщенным и осадок не образуется.

Свойства растворов . Ниже рассмотрим свойства растворов неэлектролитов. В случае электролитов в приведённые формулы вводится поправочный изотонический коэффициент.

Если в жидкости растворено нелетучее вещество, то давление насыщенного пара над раствором меньше давления насыщенного пара над чистым растворителем. Одновременно с понижением давления пара над раствором наблюдается изменение его температуры кипения и замерзания; температуры кипения растворов повышаются, а температуры замерзания понижаются по сравнению с температурами, характеризующими чистые растворители.

Относительное понижение температуры замерзания или относительное повышение температуры кипения раствора пропорционально его концентрации.

Растворимость — это свойство вещества образовывать с различными растворителями гомогенные смеси. Как мы уже упоминали, количество растворяемого вещества, необходимое для получения насыщенного раствора и определяет этого вещества. В связи с этим растворимость имеет ту же меру, что и состав, например, массовая доля растворенного вещества в его насыщенном растворе или количество растворенного вещества в его насыщенном растворе.

Все вещества с точки зрения его растворимости можно классифицировать на:

  • Хорошо растворимые – в 100 г воды способно раствориться более 10 г. вещества.
  • Малорастворимые — в 100 г воды способно раствориться менее 1 г. вещества.
  • Нерастворимые — в 100 г воды способно раствориться менее 0,01 г. вещества.

Известно, что если полярность растворяемого вещества схожа с полярностью растворителя, то оно скорее всего растворится. Если же полярности разные, то с большой долей вероятности раствора не получится. Почему же так происходит?

Полярный растворитель – полярное растворяемое вещество.

Для примера опишем раствор поваренной соли в воде. Как мы уже знаем, молекулы воды имеют полярную природу с частичным положительным зарядом на каждом атоме водорода и частичным отрицательным – на атоме кислорода. А твердые ионные вещества, вроде хлорида натрия, содержат катионы и анионы. Поэтому, когда поваренную соль помещают в воду, частичный положительный заряд на атомах водорода молекул воды притягивается отрицательно заряженным ионом хлора в NaCl. Аналогично, частичный отрицательный заряд на атомах кислорода молекул воды притягивается положительно заряженным ионом натрия в NaCl. И, поскольку притяжение молекул воды для ионов натрия и хлора сильнее взаимодействия, удерживающего их вместе, соль растворяется.

Неполярный растворитель – неполярное растворяемое вещество.

Попробуем растворить кусочек тетрабромида углерода в тетрахлориде углерода. В твердом состоянии молекулы тетрабромида углерода удерживаются вместе благодаря очень слабому дисперсионному взаимодействию. При помещению его в тетрахлорид углерода его молекулы будут располагаться более хаотично, т.е. увеличивается энтропия системы и соединение растворится.

Равновесия при растворении

Рассмотрим раствор малорастворимого соединения. Для того, чтобы между твердым веществом и его раствором установилось равновесие, раствор должен быть насыщенным и соприкасаться с нерастворившейся частью твердого вещества.

Например, пусть равновесие установилось в насыщенном растворе хлорида серебра:

AgCl(тв)=Ag + (водн.) + Cl — (водн.)

Рассматриваемое соединение является ионным и в растворенном виде присутствует в виде ионов. Нам уже известно, что в гетерогенных реакциях концентрация твердого вещества остается постоянной, что позволяет включить ее в константу равновесия. Поэтому выражение для будет выглядеть следующим образом:

K = [ Cl — ]

Такая константа называется произведением растворимости ПР , при условии, что концентрации выражаются в моль/л.

ПР = [ Cl — ]

Произведение растворимости равно произведению молярных концентраций ионов, участвующих в равновесии, в степенях, равных соответствующим стехиометрическим коэффициентам в уравнении равновесия.
Следует отличать понятие растворимости и произведения растворимости. Растворимость вещества может меняться при добавлении в раствор еще какого-либо вещества, а произведение растворимости не зависит от присутствия в растворе дополнительных веществ. Хотя эти две величины взаимосвязаны, что позволяет зная одну величину, вычислить другую.

Зависимость растворимости от температуры и давления

Вода играет важную роль в нашей жизни, она способна растворять большое количество веществ, что имеет большое значение для нас. Поэтому основное внимание уделим именно водным растворам.

Растворимость газов повышается при росте давления газа над растворителем, а растворимость твердых и жидких веществ зависит от давления несущественно.

Уильям Генри впервые пришел к выводу, что количество газа, которое растворяется при постоянной температуре в заданном объеме жидкости, прямо пропорциональна его давлению . Данное утверждение известно как закон Генри и выражается оно следующим соотношением:

С = k·P ,

где С – растворимость газа в жидкой фазе

Р – давление газа над раствором

k – постоянная Генри

На следующем рисунке приведены кривые зависимости растворимости некоторых газов в воде от температуры при постоянном давлении газа над раствором (1 атм)

Как видно, растворимость газов уменьшается с ростом температуры, в отличие от большинства ионных соединений, растворимость которых растет с увеличением температуры.

Влияние температуры на растворимость зависит от изменения энтальпии, которое происходит при процессе растворения. При протекании эндотермического процесса происходит увеличение растворимости с ростом температуры. Это следует из уже известного нам : если изменить одно из условий, при котором система находится в состоянии равновесия – концентрацию, давление или температуру, - то равновесие сместится в направлении той реакции, которая противодействует этому изменению.

Представим, что мы имеем дело с раствором, находящимся в равновесии с частично растворившимся веществом. И этот процесс является эндотермическим, т.е. идет с поглощением теплоты из вне, тогда:

Вещество + растворитель + теплота = раствор

Согласно принципу Ле – Шателье, при эндотермическом процессе, равновесие смещается в направлении, способствующее уменьшению поступления теплоты, т.е. вправо. Таким образом, растворимость увеличивается. Если же процесс экзотермический , то повышение температуры приводит к уменьшению растворимости.


зависимость растворимости ионных соединеий от Температуры

Известно, что существуют растворы жидкостей в жидкостях . Некоторые из них могут растворяться друг в друге в неограниченных количествах, как вода и этиловый спирт, а другие — растворяются лишь частично. Так, если попробовать растворить четыреххлористый углерод в воде, то при этом образуются два слоя: верхний — насыщенный раствор воды в четыреххлористом углероде и нижний - насыщенный раствор четыреххлористого углерода в воде. При повышении температуры, в основном, взаимная растворимость таких жидкостей увеличивается. Это происходит до тех пор, пока не будет достигнута критическая температура, при которой обе жидкости смешиваются в любых пропорциях. От давления растворимость жидкостей практически не зависит.

При вводе в смесь, состоящую из двух несмешивающихся между собой жидкостей, вещества, которое может растворяться в любой из этих двух жидкостей, то его распределение между этими жидкостями будет пропорционально растворимости в каждой из них. Т.е. согласно закону распределения вещество, способное растворяться в двух несмешивающихся растворителях, распределяется между ними так, что отношение его концентраций в этих растворителях при постоянной температуре остается постоянным, независимо от общего количества растворенного вещества:

С 1 /С 2 = К,

где С 1 и С 2 – концентрации вещества в двух жидкостях

К – коэффициент распределения.

Категории ,

Растворимость - это способность веществ растворяться в воде. Одни вещества очень хорошо растворяются в воде, некоторые даже в неограниченных количествах. Другие - лишь в небольших количествах, а третьи - вообще почти не растворяются. Поэтому вещества делят на растворимые, малорастворимые и практически нерастворимые.

К растворимым относятся такие вещества, которые в 100 г воды растворяются в количестве больше 1 г (NaCl, сахар, HCl, KNO 3). Малорастворимые вещества растворяются в количестве от 0,01 г до 1 г в 100 г воды (Ca(OH) 2 , CaSO 4). Практически нерастворимые вещества не могут раствориться в 100 г воды в количестве больше 0,01 г (металлы, CaCO 3 , BaSO 4).

При протекании химических реакций в водных растворах могут образовываться нерастворимые вещества, которые выпадают в осадок или находятся во взвешенном состоянии, делая раствор мутным.

Существует таблица растворимости в воде кислот, оснований и солей, где отражено является ли соединение растворимым. Все соли калия и натрия, а также все нитраты (соли азотной кислоты) хорошо растворимы в воде. Из сульфатов (солей серной кислоты) малорастворим сульфат кальция, нерастворимы сульфаты бария и свинца. Хлорид свинца малорастворим, а хлорид серебра нерастворим.

Если в клетках таблицы растворимости стоит черточка, это значит, что соединение реагирует с водой, в результате чего образуются другие вещества, т. е. соединение в воде не существует (например, карбонат алюминия).

Все твердые вещества, даже хорошо растворимые в воде, растворяются лишь в определенных количествах. Растворимость веществ выражают числом, которое показывает наибольшую массу вещества, которая может раствориться в 100 г воды при определенных условиях (обычно имеется в виду температура). Так при 20 °C в воде растворяется 36 г поваренной соли (хлорида натрия NaCl), более 200 г сахара.

С другой стороны, вообще нерастворимых веществ нет. Любое практически нерастворимое вещество хотя бы в очень незначительных количествах, но растворяется в воде. Например, мел растворяется в 100 г воды при комнатной температуре в количестве 0,007 г.

Большинство веществ с повышением температуры лучше растворяются в воде. Однако NaCl почти одинаково растворим при любой температуре, а Ca(OH)2 (известь) лучше растворяется при более низкой температуре. На основе зависимости растворимости веществ от температуры строят кривые растворимости.

Если в растворе при данной температуре еще можно растворить какое-то количество вещества, то такой раствор называют ненасыщенным. Если же достигнут придел растворимости, и больше вещества растворить нельзя, то говорят, что раствор насыщенный.

Когда охлаждают насыщенный раствор, то растворимость вещества понижается, и, следовательно, оно начинает выпадать в осадок. Часто вещество выделяется в виде кристаллов. Для разных солей кристаллы имеют свою форму. Так кристаллы поваренной соли имеют кубическую форму, у калийной селитры они похожи на иголки.

Растворение - это самопроизвольный обратимый физико-химический процесс, включающий три основные стадии.

    Стадия атомизации - разрушение кристаллической решетки растворяемого о вещества; процесс эндотермический (D ат Н>О).

2) Стадия сольватации (гидратации) - образование сольватных (гидратных) оболочек вокруг частиц растворенного вещества; процесс экзотермический, (D сол Н<О).

3) Стадия диффузии - равномерное распределение растворенного вещества по всему объему раствора, (D диф Н ≈ О).

Таким образом, теплота растворения (D р Н) является величиной интегральной:

D p H = D ат Н + D сол Н +D диф Н

Теплота растворения – это тепловой эффект растворения 1 моль вещества в бесконечно большом объеме растворителя.

Растворение большинства твердых веществ в воде – процесс эндотермический (D p H > 0), т.к. теплота, поглощаемая на стадии атомизации, не компенсируется теплотой, выделяющейся на стадии сольватации. При растворении газов теплота выделяется (D p H < 0), т.к. их растворение не включает стадию атомизация (газообразные вещества не образуют кристаллических решеток). Растворение жидкостей друг в друге протекает без заметного теплового эффекта (D p H ≈ 0), т.к. главной стадией их растворения является диффузия.

Как любой обратимый процесс, растворение доходит до равновесия. Раствор, находящийся в равновесии с избытком растворяемого вещества, называется насыщенным. В состоянии равновесия скорость растворения равна скорости кристаллизации.

По степени насыщения растворы бывают:

    ненасыщенные : содержат меньше растворенного вещества, чем насыщенные,

    насыщенные,

    пересыщенные : содержат больше растворенного вещества, чем насыщенные (они неустойчивы).

4.3. Растворимость газов, жидкостей и твердых веществ в воде

Растворимость (S ) - это способность вещества растворяться в данном растворителе. Она равна содержанию растворенного вещества в его насыщенном растворе при данной температуре.

Растворимость зависит от природы веществ и термодинамических параметров системы. Влияние природы веществ на растворимость описывается правилом: «Подобное растворяется в подобном ». Другими словами, полярные вещества хорошо растворяются в полярных растворителях, а неполярные - в неполярных. Например: поваренная соль NaCl хорошо растворима в воде и плохо в бензоле; I 2 хорошо растворим в бензоле и плохо в воде.

Растворение газов в воде можно представить схемой:

А(газ) + Н 2 ОА(раствор), D р Н<О

В соответствии с принципом Ле Шателье при повышении температуры равновесие смещается влево, т.е. растворимость уменьшается, а при понижении температуры - вправо, растворимость увеличивается (таблица 3).

Таблица 3 - Растворимость газов (л/1л Н 2 О) при р = 1 атм.

В соответствии с принципом Ле Шателье при увеличении давления равновесие смещается вправо, т.е. растворимость газов растет. Количественная зависимость растворимости газа от давления описывается уравнением Генри (1803 г.):

где k - константа Генри,

p - давление газа над раствором.

Закон Генри позволяет вскрыть причины возникновения кессонной болезни. Она возникает у водолазов, летчиков и представителей других профессий, которые по роду деятельности быстро переходят из среды с высоким давлением в среду с низким давлением.

В период пребывания человека в среде с высоким давлением его кровь и ткани насыщаются азотом (N 2) и частично углекислым газом (СО 2). Накопления кислорода не происходит, так как он расходуется на физиологические процессы в организме. При быстром переходе человека в среду с низким давлением происходит выделение избыточных количеств растворенных газов, которые не успевают диффундировать через легкие и образуют газовые пробки в тканях и кровеносных сосудах. Это приводит к закупорке и разрыву кровеносных капилляров, накоплению пузырьков газа в подкожной жировой клетчатке, в суставах, в костном мозге. Симптомами кессонной болезни являются головокружение, зуд, мышечные и загрудинные боли, нарушение дыхания, паралич и смерть.

На растворимость газов влияет присутствие электролитов в растворе. Эта зависимость описывается уравнением Сеченова (1859 г.):

где S и S o - растворимость газа в растворе электролита и чистой воде,

с - концентрация электролита,

k - константа Сеченова.

Из уравнения Сеченова следует, что чем выше концентрация электролита в растворе, тем ниже растворимость газов. Вот почему растворимость газов в воде больше, чем в плазме (таблица 4).

Таблица 4 - Растворимость газов в чистой воде и плазме крови при 38ºС

Растворение жидкости в воде можно представить схемой:

А (ж) + Н 2 ОА (раствор)

Основной стадией растворения жидкости в жидкости является диффузия, скорость которой возрастает с увеличением температуры. Соответственно, взаимная растворимость жидкостей усиливается с ростом температуры.

Различают три типа жидкостей:

а) неограниченно растворимые друг в друге: Н 2 SO 4 / Н 2 О, С 2 Н 5 ОН / Н 2 О;

б) ограниченно растворимые: С 6 Н 6 / Н 2 О

в) абсолютно нерастворимые: Hg / H 2 O.

Если в систему из двух несмешивающихся жидкостей добавить третий компонент, то отношение его концентраций в каждой жидкости есть величина постоянная при данной температуре (закон распределения Нернста-Шилова) (рисунок 6).

Рисунок 6 - Закон распределения Нернста-Шилова

Закон Нернста-Шилова – теоретическая основа экстракции, одного из способов разделения смесей.

Растворение твердых веществ в воде описывается схемой:

А (к) + Н 2 ОА (раствор), Dр Н > О

Если растворяется труднорастворимый электролит (соль, основание или кислота), то гетерогенное равновесие между твердым веществом и его ионами в насыщенном растворе можно представить схемой:

A n B m (к) nA m+ (aq) + mB n- (aq).

Данное равновесие характеризуется при помощи константы растворимости K s , являющейся константой гетерогенного равновесия:

K s = n · m

Для бинарных электролитов n = m = 1, следовательно

K s = · .

Соответственно S 2 =К s , и S =

Например, при растворении труднорастворимой соли BaSO 4 в воде устанавливается гетерогенное равновесие между кристаллами вещества и его ионами в насыщенном растворе:

BaSO 4 (к) Ba 2+ (aq) + SO 4 2- (aq)

Согласно закону действующих масс, K S = = 1,1·10 -10 .

Отсюда S =
.

Чем меньше K s , тем ниже растворимость вещества и легче формируется осадок труднорастворимого электролита.

Условие образования осадка труднорастворимого электролита можно сформулировать следующим образом: осадок выпадает из насыщенных и пересыщенных растворов. В насыщенном растворе · = K s , а в пересыщенном растворе · > K s

Одним из наиболее важных гетерогенных процессов in vivo является образование костной ткани. Основным минеральным компонентом костной ткани является кальций гидроксофосфат (гидроксоаппатит) Са 5 (РО 4 ) 3 ОН .

Процесс формирование костной ткани можно представить следующим образом. В крови при рН = 7,4 в приблизительно равных количествах находятся анионы НРО 4 2– и Н 2 РО 4 – , а также катионы Са 2+ . После сравнения констант растворимости CаНРО 4 (К S = 2,7∙10 –7) и Cа(Н 2 РО 4) 2 (К S = 1∙10 –3), становится очевидным, что менее растворимой является соль СаНРО 4 . Вследствие этого, именно СаНРО 4 образуется на первой стадии формирования костной ткани:

Са 2+ + НРО 4 2– СаНРО 4 .

Дальнейшее формирование гидроксоаппатита протекает в соответствии с уравнениями:

3 СаНРО 4 + Са 2+ + 2 ОН – Са 4 Н(РО 4) 3 + 2 Н 2 О,

Са 4 Н(РО 4) 3 + Са 2+ + 2 ОН – Са 5 (РО 4) 3 ОН + Н 2 О.

Константа растворимости гидроксоаппатита очень мала (К S = 10 -58), что свидетельствует о высокой устойчивости костной ткани.

При избытке ионов Са 2+ в крови равновесие сдвигается вправо, что приводит к обызвествлению костей. При недостатке Са 2+ равновесие сдвигается влево; происходит разрушение костной ткани. У детей это приводит к рахиту, у взрослых развивается остеопороз.

При недостатке кальция в костной ткани его место могут занять ближайшие электронные аналоги: бериллий и стронций. Их накопление вызывает соответственно бериллиевый и стронциевый рахит (повышенная ломкость и хрупкость костей). При инкорпорации радиоизотопа Sr-90 в костную ткань происходит облучение костного мозга, что может привести к лейкозу и другим онкологическим заболеваниям. Кальций блокирует накопление организмом радиоактивного стронция.

Растворы играют ключевую роль в природе, науке и технике. Вода – основа жизни, всегда содержит растворенные вещества. Пресная вода рек и озер содержит мало растворенных веществ, в то время как морская вода содержит около 3,5% растворенных солей.

Первичный океан (во время зарождения жизни на Земле), по предположениям, содержал всего 1% растворенных солей.

«Именно в этой среде впервые развивались живые организмы, из этого раствора они черпали ионы и молекулы, которые необходимы для их дальнейшего роста и развития… Со временем живые организмы развивались и преображались, поэтому они смогли оставить водную среду и перебраться на сушу и затем подняться в воздух. Они получили эти способности, сохранив в своих организмах водный раствор в виде жидкостей, которые содержат жизненно важный запас ионов и молекул» – именно такими словами описывает роль растворов в природе знаменитый американский химик, лауреат Нобелевской премии Лайнус Полинг. Внутри каждого из нас, в каждой клетке нашего организма – содержатся воспоминания о первичном океане, месте в котором зародилась жизнь, - водном растворе, обеспечивающем саму жизнь.

В любом живом организме постоянно течет по сосудам – артериям, венам и капиллярам – необычный раствор, который составляет основу крови, массовая доля солей в нем такая же, как в первичном океане, – 0,9%. Сложные физико-химические процессы, протекающие в организме человека и животного, также взаимодействуют в растворах. Процесс усвоения пищи связан с переводом высокопитательных веществ в раствор. Природные водные растворы напрямую связаны с процессами почвообразования, снабжением растений питательными веществами. Такие технологические процессы в химической и многих других отраслях промышленности, например производство удобрений, металлов, кислот, бумаги, происходят в растворах. Современная наука занимается изучением свойств растворов. Давайте выясним, что же такое раствор?

Растворы отличаются от других смесей тем, что частицы составных частей располагаются в них равномерно, и в любом микрообъеме подобной смеси состав будет одинаков.

Именно поэтому под растворами понимали однородные смеси, которые состоят из двух или более однородных частей. Такое представление исходило из физической теории растворов.

Приверженцы физической теории растворов, которой занимались Вант-Гофф, Аррениус и Оствальд, считали, что процесс растворения является результатом диффузии.

Д. И. Менделеев и сторонники химической теории считали, что растворение является результатом химического взаимодействия растворенного вещества с молекулами воды. Таким образом, будет точнее определить раствор как однородную систему, которая состоит из частиц растворенного вещества, растворителя, а также продуктов их взаимодействия.

Вследствие химического взаимодействия растворенного вещества с водой образуются соединения – гидраты. Химическое взаимодействие обычно сопровождается тепловыми явлениями. К примеру, растворение серной кислоты в воде проходит с выделением такого колоссального количества тепла, что раствор может закипеть, именно поэтому кислоту льют в воду, а не наоборот. Растворение таких веществ как хлорид натрия, нитрат аммония, сопровождается поглощением тепла.

М. В. Ломоносов доказал, что растворы превращаются в лед при более низкой температуре, чем растворитель.

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.