Open Library - открытая библиотека учебной информации. Методы изучения обмена веществ Построение калибровочного графика

Страница 66 из 76

Видео: Определение с реактивного белка в сыворотке крови

Показатели общего белка плазмы крови и его отдельных фракций имеют важное значение в диагностике многих заболеваний.
Определение общего белка сыворотки крови. Может производиться с помощью ряда методов (азотометрические, гравиметрические, нефелометрические, рефрактометрические, спектрофотометрические и др.). Из колориметрических способов биуретовый метод наиболее специфичен, достаточно чувствителен, точен и практически доступен. Этот метод представлен в качестве унифицированного для определения общего белка в сыворотке крови. Основан он на следующем принципе: белки реагируют в щелочной среде с меди сульфатом, образуя соединения, окрашенные в фиолетовый цвет.
Техника определения общего белка такова. К 5 мл рабочего раствора биуретового реактива (4,5 г сегнетовой соли растворяют в 40 мл 0,2 н. NaOH, прибавляют 1,5 г C11SO4 5Н2О и 0,5 г К1 и доливают до 100 мл 0,2 н. NaOH) добавляют 0,1 мл сыворотки крови. Через 30 минут пробу колориметрируют на ФЭКе в 10 мм кювете при зеленом светофильтре против контроля. Для приготовления контроля к 5 мл биуретового реактива добавляют 0,1 мл 0,9 % NaCl. Расчет ведут по калибровочному графику.
Нормальная концентрация общего белка у взрослых колеблется от 62 до 82 г/л. Данные по возрастам у детей представлены в табл. 49.
Таб.г. 49. Содержание белковых фракций в процентах от общего количества белка (средние данные) по возрастам (по Ю. Е. Вельтищеву, 1979)

Наиболее частыми причинами развития гипопротеинемип являются недостаточное поступление белков в организм с пищей (белковое голодание), значительные потери белка и угнетение процессов биосинтеза белков крови.
Недостаточное поступление белков в организм наблюдается при нарушениях деятельности желудочно-кишечного тракта (сужение пищевода, пилороспазм и пилоростеноз, опухоли, воспалительные процессы желудочно-кишечного тракта и др.), малом содержании белка в рационе или несбалансированном аминокислотном составе и др
К потерям белка организмом ведут заболевания почек, протекающие с протеинурией, острые и хронические кровотечения, обширные экссудаты и выпоты в серозные полости, ожоги и др.
Гипопротеинемия, связанная с понижением биосинтеза белка в печени, встречается при хронических гепатитах, интоксикациях, циррозах, длительных нагноительных процессах, злокачественных образованиях и др.
Гиперпротеинемия-явление сравнительно редкое. Наблюдается при эксикозах, несахарном диабете, непроходимости кишечника, генерализованном перитоните, миеломной болезни (стойкая до 120 г/л).
Методы определения белковых фракций в сыворотке крови. Исследование количественных взаимоотношении между отдельными белковыми фракциями имеет важное диагностическое значение, так как позволяет дифференцировать отдельные виды гипо- и гиперпротеинемии, а также ряд заболеваний, не сопровождающихся изменением содержания общего белка.
Для фракционирования белков плазмы используются высаливание нейтральными солями, электрофоретическое фракционирование, иммунологические и седиментационные методы, преципитирование этиловым спиртом при низкой температуре, хроматография, гельфильтрация. Наиболее часто из них применяются электрофоретические методы, основанные на различной скорости передвижения белков в электрическом поле в зависимости от их электрического заряда и других физических и химических свойств.
Широкое распространение получили методы электрофореза на бумаге и гелях - агаровом, крахмальном и других, особенно на полиакриламидном геле, с помощью которого можно получить около 30 фракций белка. Чаще стал применяться электрофорез на пленках ацетата целлюлозы. Однако в клинико-диагностических лабораториях используется преимущественно метод электрофореза на бумаге (В. Г. Колб, В. С. Камышников, 1976). В основе этого метода лежит следующий принцип: под влиянием постоянного электрического поля белки сыворотки, обладающие электрическим зарядом, движутся по смоченной буферным раствором бумаге со скоростью, которая зависит от величины заряда и молекулярной массы. Белки сыворотки крови при этом разделяются на пять фракции: альбумины и глобулины а1, а2, в, у.
Нормальное соотношение альбуминов и глобулинов (альбумин-глобулиновый коэффициент) равно примерно 2:1. Процентное соотношение отдельных фракций белков у взрослых и детей в зависимости от возраста представлено в табл. 49. Общее количество белка и белковых фракций в крови изменяется при различных заболеваниях у детей.
У взрослых и детей старшего возраста выделяют следующие типы электрофореграмм: I) острого воспалительного процесса- 2) подострого хронического воспаления- 3) нефротического симптомокомплекса- 4) злокачественных новообразовании- 5) гепатитов- 6) цирроза печени- 7) механической желтухи- 8) у- и р-глобулиновых плазмацитом.

В первом типе отмечается снижение уровня альбуминов и повышение a1, а2-глобулинов, а в более поздних стадиях и у-глобулинов- во втором - умеренное уменьшение фракций альбуминов и выраженное увеличение а2-, у-глобулиновых фракций- в третьем - значительное уменьшение альбуминов, повышение а-глобулинов при умеренном понижении у-глобулинов- в четвертом - снижение альбуминов и значительное увеличение всех глобулиновых фракций- в пятом - умеренное уменьшение альбуминов и увеличение у- и (3-глобулинов- в шестом - снижение альбуминов при сильном увеличении у-глобулиновой фракции, основание которой расширено- в седьмом - уменьшение альбуминов и умеренное увеличение СС2-, Р- и у-глобулинов- в восьмом - общий белок резко повышен, альбумины и большинство глобулинов снижены, в зависимости от вида больше увеличены у- или в-гло- булины.
У грудных детей наблюдается физиологическая недостаточность биосинтеза у-глобулинов. Поэтому при инфекционных заболеваниях у них в- и а2- глобулины повышаются более значительно, чем у детей старшего возраста и взрослых. Постоянное повышение у-глобулинов у детей раннего возраста может свидетельствовать о септическом состоянии.





Методы исследования белкового обмена: Электрофоретический – основан на разделении белков в постоянном электрическом поле в зависимости от величины белковой молекулы. Ультрацентрифугирование – основано на различной скорости седиментации отдельных белков в зависимости от их молекулярной массы. Хроматографические: - Ионнообменная хроматография основана на различной способности отдельных белков к обмену с ионами ионнообменных смол, - Хроматография на молекулярных ситах (гельфильтрация) – на сефадексах – белки разделяются в зависимости от величины молекулы, - Аффинная хроматография – белки делятся на индивидуальные в зависимости от сродства к аффинату (наполнителю колонок).


Высаливание – основано на удалении водной оболочки различными концентрациями солей щелочных и щелочно-земельных металлов и иона аммония. Это старый метод разделения белков. Использование цветных реакций – например биуретовая на общий белок, ксантопротеиновая на циклические аминокислоты,интенсивность окраски измеряют колориметрически. Иммунологические методы – используют для количественного определения индивидуальных белков. При взаимодействии со специфической антисывороткой образуется мутный раствор, интенсивность помутнения измеряют колориметрически.




Подготовка обследуемых: Забор крови делают утром с 8 до 10 часов утра. В экстренных случаях взятие крови осуществляется в любое время дня. Кровь берут натощак, после 8-12-часового голодания. Воздержание от приема алкогольных напитков не менее 24 часов. Исключается физическое напряжение и эмоциональное возбуждение, для чего дают обследуемому отдохнуть 15 минут.


Получение и хранение биологического материала: Желтушные, гемолизированные, хилезные сыворотка или плазма не пригодны для исследования. Для получения плазмы венозную кровь собирают в чистую, сухую пробирку с антикоагулянтом. Соли ЭДТА, гепарин, гепаринат лития, оксалат натрия, цитраты снижают результаты. Центрифугирование проводят в обычном режиме не позднее 3 часов от забора материала.


Для получения сыворотки крови венозную кровь собирают в чистую, сухую пробирку. Центрифугирование проводят в обычном режиме не позднее 3 часов от забора материала. Для исследования мочи используют утреннюю порцию. Исследование проводят не позднее, чем через 2 часа после взятия пробы.


Условия хранения биологического материала: Биологический материал хранят в хорошо закрытых контейнерах. Цельная кровь не пригодна для хранения, даже в присутствии консервантов. Плазму и сыворотку можно хранить 1 день при комнатной температуре, 7 дней при 4-8 С, от 3 до 6 месяцев при –20 С. В закрытых сосудах белок стабилен в моче 2 дня при комнатной температуре, до 17 дней в холодильнике (4-8 С).


Примечания: уровень общего белка может зависеть от возраста (у детей и пожилых ниже), пола (у мужчин выше), характера питания. Повышение белков в крови вызывают следующие факторы: длительное пребывание в вертикальном положении, стресс, прием алкоголя, некоторые лекарственные препараты (цефотаксим, фуросемид, фенобарбитал, преднизалон, прогестерон). Понижение уровня белков в крови вызывают: травма, курение, беременность, голодание, перерыв в приеме алкоголя, нарушение питания, ожирение, некоторые лекарственные препараты (декстран, ибупрофен, пероральные контрацептивы).


Домашнее задание Пустовалова Л.М. Основы биохимии для медицинских колледжей стр

При заболеваниях печени особенно широко проводятся исследования белкового обмена, так как состояние белкового обмена и его нарушение отражает функциональное состояние печени.

Некоторое значение имеет общее снижение количества белка в сыворотке крови ниже 6,5-8,5% и в особенности изменение соотношения его фракций, которое в норме составляет 4,5-5,5% для альбуминов и 2-2, 5% для глобулинов. Такое соотношение соответствует альбуминово-глобулиновому коэффициенту, равному 1,5-2,0.

Отклонение от указанных взаимоотношений указывает на нарушение белкового обмена. В частности, снижение альбуминов часто говорит о серьезном повреждении паренхимы печени, поэтому для исследования белкового обмена используют фракционное исследование белков крови. Большое клиническое значение имеет снижение альбумина крови ниже 3,5%; прогноз становится плохим при его снижении до 2,5%.

Уменьшение количества альбуминов и, следовательно, снижение альбуминово-глобулинового коэффициента наряду с некоторыми внепеченочными заболеваниями (общее истощение) встречается также при циррозах печени и хроническом гепатите.

Исследование белковых фракций

Введение в практику метода электрофореза, т. е. метода разделения сывороточного белка на отдельные фракции при прохождении электрического тока, дало возможность более детально изучить соотношение отдельных фракций, в частности глобулинов. В щелочной среде белковые фракции распределяются таким образом, что ближе всего к аноду располагаются мелкодисперсные альбумины, затем по восходящей величине белковых частиц a-1, a-2, в- и у-глобулины. Последние как наиболее грубодисперсные находятся ближе всех к катоду. Содержание альбуминов составляет в среднем 55-56%, a1-глобулинов - 5-6%, а2- глобулинов - 8-9%, и-глобулинов - 13-14%, у-глобулинов - 16-17%. Количество а2-глобулинов повышается при дистрофических процессах в соединительной ткани, коллагенозах и других патологических процессах, а количество глобулинов повышается при жировой дистрофии печени. Увеличение у-глобулинов, доходящее до 30-50%, отмечается при циррозах и диффузных гепатитах, умеренное повышение - при остром гепатите и воспалительных процессах; оно является надежным показателем перехода гепатита в цирроз. Повышение у-глобулинов обнаруживают также при различных воспалительных процессах.

Статью подготовил и отредактировал: врач-хирург

Видео:

Полезно:

Статьи по теме:

  1. При терапевтических заболеваниях, как и при многих других болезнях, очень большую пользу приносит общетерапевтический биохимический...
  2. Уровень глобулина повышен при остром дистрофическом поражении печени, в ранние сроки механической желтухи, при амилоидозе...
  3. Исследование углеводного обмена с помощью определения сахара крови имеет значение для определения нарушений обмена углеводов...

Для изучения обмена веществ в организме и отдельных органах существует разнообразные методы. Одним из старинных является метод балансовых опытов , заключающийся в том, что изучают количество поступивших органических веществ и количество образовавшихся конечных продуктов.

Для изучения обмена веществ в отдельных органах применяют метод изолированных органов . Органы, способные сохранять в течение некоторого времени свою жизненную активность и могут использовать для своей деятельности питательные вещества, пропускающие через кровь.

Для изучения обмена веществ в отдельных органах - метод ангеостомии. Разработал Лондон. На кровеносные сосуды накладывают специальные трубочки, которые позволяют получить притекающую кровь к какому-либо органу. По изменению химического состава крови судят о процессе обмена веществ.

В настоящее время широко используется метод меченых атомов – основанный на использовании соединений, в молекулы которых включены атомы тяжелых и радиоактивных изотопов биоэлементов. Вводят в организм соединения, меченные такими изотопами, используют радиометрические методы анализа можно проследить за судьбой элементов или соединений в организме и о его участии в метаболических процессах.


59 вопрос Обмен белков. Классификация их (два вида) и характеристика. Значение для организма. Биологическая ценность белков. Азотистый баланс. Роль печени в белковом обмене. Особенности белкового обмена у жвачных. Регуляция белкового обмена

Обмен белков ФУНКЦИИ БЕЛКОВ

Пластическая функция белков состоит в обеспечении роста и развития организма за счет процессов биосинтеза.

Ферментативная активность белков регулирует скорость протекания биохимических реакций.

Защитная функция белков состоит в образовании иммунных белков - антител. Белки способны связывать токсины и яды а также обеспечивать свертываемость крови (гемостаз).

Транспортная функция заключается в переносе кислорода и двуокиси углерода эритроцитным белком гемоглобином , а также в связывании и переносе некоторых ионов (железо, медь, водород), лекарственных веществ, токсинов.

Энергетическая роль белков обусловлена их способностью освобождать при окислении энергию.


Белковый обмен проходит четыре основных этапа:

Расщепление белка в ЖКТ и всасывание в виде аминокислот;

Центральное звено обмена – синтез из аминокислот собственных белков организма и расщепление белка в клетках;



Межуточные превращения аминокислот в клетках;

Образование и выведение конечных продуктов белкового обмена.


Азотистый баланс

Косвенным показателем активности обмена белков служит так называемый азотистый баланс - разность между количеством азота, поступившего с пищей, и количеством азота, выделяемого из организма в виде конечных метаболитов.

Азотистое равновесие - количество поступившего азота равно количеству выделенного (отмечают у взрослого здорового животного в нормальных условиях кормления и содержания)

Положительный азотистый баланс превышает выделенное.

Отрицательный азотистый баланс - состояние, при котором количество поступившего азота меньше выделенного.

При расчетах азотистого баланса исходят из того факта, что в белке содержится около 16% азота, то есть каждые 16 г азота соответствуют 100 г белка (100:16=6,25).


Белковый минимум

Наименьшее количество вводимого с пищей белка, способствующее поддержанию азотистого равновесия.


МРС, свиньи – 1г/кг живой массы

Лошади – 0,7-0,8 (1,2-1,42)

Коровы – 0,6-0,7 (1)

Человек – 1,5-1,7 (белковый оптимум).


Вне зависимости от видоспецифичности все многообразные белковые структуры содержат в своем составе всего 20 аминокислот . Для нормального метаболизма имеет значение не только количество получаемого белка, но и его качественный состав, а именно соотношение заменимых и незаменимых аминокислот .

Незаменимых аминокислот для моногастричных животных, птиц и человека 10: дизин, триптофан, гистидин, фенилаланин, лейцин, изолейцин, метионин, валин, треонин, аргинин.

Биологическая ценность белков

У жвачных и некоторых других видов животных есть свои особенности в обмене белка: микрофлора преджелудков способна синтезировать все незаменимые аминокислоты и, следовательно, могут обходиться кормом без незаменимых аминокислот.



Белки в которых нет хотя бы одной незаменимой аминокислоты или если они содержатся в недостаточных количествах называются неполноценными (растительные белки ).

Обмен аминокислот

Основное место обмена аминокислот – печень:

дезаминирование – отщепление аминогруппы (в виде аммиака) с образованием жирных кислот, оксикислот, кетокислот;

трансаминирование – перенос аминогрупп из аминокислот в кетокислоты с образованием другой аминокислоты и кетокислоты без промежуточного образования аммиака;

декарбоксилирование – отщепление карбоксильной группы в виде углекислоты с образованием биогенных аминов.


Регуляция белкового обмена

Глюкокортикоиды - ускоряют распад белков и аминокислот, в результате чего усиливается выделение азота из организма.

Механизм действия СТГ состоит в ускорении утилизации аминокислот клетками. Соответственно, при акромегалии и гипофизарном гигантизме наблюдается положительный азотистый баланс, при гипофизэктомии и гипофизарном нанизме – отрицательный.

Тироксин : при гиперфункции щитовидной железы повышается обмен белков

Гипофункция сопровождается замедлением обмена веществ, останавливается рост и развитие организма.

В печени происходит не только синтез белка, но и обеззараживание продуктов их гниения. В почках совершается дезаминирование продуктов азотистого обмена.

  • Гипоаллергенная диета
  • 8. Общий осмотр больного, правила и техника. Оценка сознания, положения больного. Оценка телосложения.
  • 9. Осмотр головы, лица, глаз, век, носа, полости рта, шеи.
  • 10. Осмотр кожи больного (окраска, эластичность, влажность, высыпания, рубцы) Осмотр кожи.Обращают внимание на окраску, эластичность, влажность кожи, различные высыпания и рубцы.
  • 11. Осмотр и пальпация лимфатических узлов, мышечной системы, суставов, конечностей.
  • 12. Осмотр грудной клетки. Признаки, определяющие форму грудной клетки. Физиологические и патологические формы грудной клетки.
  • 14. Определение типа дыхания, симметричности, частоты, глубины дыхания, дыхательной экскурсии грудной клетки.
  • 15. Пальпация грудной клетки. Определение болезненности, эластичности грудной клетки. Определение голосового дрожания, причины его усиления или ослабления.
  • 16. Перкуссия легких. Физическое обоснование метода. Способы перкуссии. Виды перкуторного звука.
  • 17. Определение пространства Траубе, его диагностическое значение.
  • 18. Сравнительная перкуссия легких. Распределение звучности перкуторного тона в различных местах грудной клетки в норме. Патологические изменения перкуторного звука.
  • 19. Топографическая перкуссия легких. Определение верхних и нижних границ легких, их расположение в норме. Определение экскурсии нижнего края легких.
  • 20. Аускультация легких, основные правила. Основные дыхательные шумы. Изменения везикулярного дыхания, (ослабление и усиление, саккадированное, жесткое дыхание).
  • 21. Патологическое бронхиальное дыхание, причины его появления и диагностическое значение. Бронховезикулярное дыхание, механизм его возникновения.
  • 22. Побочные дыхательные шумы, механизм их возникновения, диагностическое значение.
  • 23. Бронхофония, методика определения, диагностическое значение
  • 25. Плевральная пункция, ее методика проведения, показания и противопоказания. Исследование плеврального выпота, его виды. Трактовка анализов.
  • 26. Основные методы оценки функционального состояния органов дыхания (спирография, пневмотахометрия, пневмотахография, определение Ра о2 и РаСо2 в артериальной крови).
  • 27. Спирография, основные легочные объемы. Пневмотахометрия, пневмотахография.
  • 28 Бронхоскопия, показания, противопоказания, диагностическое значение
  • 29. Методы функциональной диагностики рестриктивного типа нарушения вентиляции.
  • 30. Методы диагностики бронхообструктивного синдрома.
  • 31. Осмотр сердечного больного. Внешний вид больных с сердечной недостаточностью. Объективные признаки, обусловленные застоем крови в малом и большом кругах кровообращения.
  • 32. Осмотр сосудов шеи. Диагностическое значение "пляски каротид", набухания и пульсации вен (отрицательного и положительного венного пульса). Визуальное определение цвд.
  • 33. Осмотр области сердца (сердечный и верхушечный толчок, сердечный горб, эпигастральная пульсация).
  • 34. Пальпация области сердца. Верхушечный, сердечный толчок, эпигастральная пульсация, систолическое и диастолическое дрожание, пальпация магистральных сосудов. Диагностическое значение.
  • 2. Период изгнания крови (0,25 с)
  • III. Диастола желудочков (0,37 с)
  • 2. Период изометрического (изоволюметрического) расслабления (0,08 с)
  • 3. Период наполнения желудочков (0,25 с)
  • Проекции и точки аускультации клапанов сердца.
  • Правила аускультации сердца:
  • 37. Шумы сердца, механизм их возникновения. Органические и функциональные шумы, их диагностическое значение. Аускультация шумов сердца.
  • Общие закономерности:
  • 38. Аускультация артерий и вен. Шум волчка на яремных венах. Двойной тон Траубе. Патологический шум Дюрозье.
  • 52. Поверхностная пальпация живота, методика, диагностическое значение.
  • 53. Метод глубокой скользящей пальпации живота. Диагностическое значение.
  • 54. Синдром “острого” живота
  • 56. Методы выявления Helicobakter pylori. Расспрос и осмотр больных при заболеваниях кишечника.
  • 57. Общие представления о методах исследования всасывания жиров, белков и углеводов в кишечнике, синдромы нарушения пищеварения и всасывания.
  • 58. Копрологическое исследование, диагностическое значение, основные копрологические синдромы.
  • 60. Перкуссия и пальпация печени, определение ее размеров. Семиологическое значение изменений края, поверхности консистенции печени.
  • 61. Перкуссия и пальпация селезенки, диагностическое значение.
  • 62. Лабораторные синдромы при заболеваниях печени (синдромы цитолиза, холестаза, гиперспленизма).
  • 63. Иммунологические методы исследования при патологии печени, понятие о маркерах вирусных гепатитов
  • 64. Ультразвуковое исследование печени, селезенки. Диагностическое значение.
  • 65. Радиоизотопные методы исследования функции и структуры печени.
  • 66. Исследование выделительной и обезвреживающей функций печени.
  • 67. Исследование пигментного обмена в печени, диагностическое значение.
  • 68. Методы исследования белкового обмена в печени, диагностическое значение.
  • 69. Подготовка больных к рентгенологическому исследованию желудка, кишечника, желчевыводящих путей.
  • 70. Методы исследования при заболеваниях желчного пузыря, пальпация пузырной области, оценка полученных результатов. Выявление пузырных симптомов.
  • 71. Ультразвуковой исследование желчного пузыря, общего желчного протока.
  • 72. Дуоденальное зондирование. Трактовка результатов исследования. (вариант 1).
  • 72. Дуоденальное зондирование. Трактовка результатов исследования. (вариант 2.Учебник).
  • 73. Рентгенологическое исследование желчного пузыря (холецистография, в/в холеграфия, холангиография, понятие о ретроградной холангиографии).
  • 74. Методы исследования поджелудочной железы (расспрос, осмотр, пальпация и перкуссия живота, лабораторные и инструментальные методы исследования).
  • 75. Общие представления об эндоскопических, рентгенологических, ультразвуковых методах исследования желудочно-кишечного тракта.(тупой вопрос – тупой ответ).
  • 89. Методы диагностики сахарного диабета (расспрос, осмотр, лабораторные и инструментальные методы исследования).
  • 90. Определение содержания глюкозы в крови, в моче, ацетона в моче. Гликемическая кривая или сахарный профиль.
  • 91.Диабетическая кома (кетоацидотическая), симптоматика и неотложная помощь.
  • 92. Признаки гипогликемии и первая помощь при гипогликемических состояниях.
  • 93. Клинические признаки острой надпочечниковой недостаточности. Принципы неотложной помощи.
  • 94.Правила забора биологических материалов (мочи, кала, мокроты) для проведения лабораторных исследований.
  • 1.Исследование мочи
  • 2.Исследование мокроты
  • 3.Исследование кала
  • 95. Техника забора крови для лабораторных исследований.
  • 96. Методы обследования больных с патологией органов кроветворения (расспрос, осмотр, пальпация, перкуссия, лабораторные и инструментальные методы исследования).
  • 1.Расспрос, жалобы больного:
  • 2.Осмотр:
  • В.Увеличение лимфатических узлов
  • Г.Увеличение печени и селезёнки
  • 3.Пальпация:
  • 4.Перкуссия:
  • 5.Лабораторные методы исследования (см. Вопросы № 97- 107)
  • 6.Инструментальные методы исследования:
  • 97. Методики определения Hb, подсчета эритроцитов, времени свертывания, времени кровотечения.
  • 98. Подсчет лейкоцитов и лейкоцитарной формулы.
  • 99. Методика определения группы крови, понятие о резус-факторе.
  • I группы.
  • II (а) группы.
  • III (в) группы.
  • 100.Диагностическое значение клинического исследования общего анализа крови
  • 127. Отек легких, клиническая картина, неотложная помощь.
  • 128. Неотложная помощь при желчной колике.
  • 129. Неотложная помощь при острой задержке мочи, катетеризация мочевого пузыря.
  • 130. Неотложная помощь при острой почечной колике
  • 131. Искусственная вентиляция легких и непрямой массаж сердца.
  • 132. Внезапная смерть и реанимационные мероприятия.
  • 133.Техника подкожных, внутрикожных инъекций. Осложнения, тактика медсестры при них.
  • 134.Техника внутримышечных инъекций. Осложнения, тактика медсестры при них.
  • 135.Техника внутривенных инъекций. Осложнения, тактика медсестры при них.
  • 136.Разведение антибиотиков, техника набора лекарственного раствора из ампулы и флакона.
  • 137.Техника сбора и подключения системы для переливания крови, кровезаменителей и лекарственных препаратов.
  • 138.Показания и техника наложения жгутов на конечности.
  • 68. Методы исследования белкового обмена в печени, диагностическое значение.

    Роль печени в белковом обмене очень велика: в ней синтезируются и депонируются белки, в нее поступают с кровью аминокислоты, полипепти­ды пищи и продукты распада тканевых белков.

    Здесь происходят их катаболизм, обезвреживание и удаление неиспользуемых продуктов распада. Часть аминокислот подвергается дезаминированию и переаминированию. Освобождающийся аммиак превращается печенью в менее токсичную мочевину. Из аминокислот, как принесенных извне, так и синтезированных пече­нью, она снова строит белки собственной ткани, а также белки крови; альбумин, глобулины (а и р, в какой-то мере и у), фибриноген, протромбин, гепарин, некоторые ферменты. В печени же образуются соединения белков с липидами (липопротеины) и углеводами (гликопротеины).

    Нарушение белковообразовательной функции печени выявляют, исследуя белки кровяной плазмы или сыворотки. Это нарушение сказывается не столько на общем количестве белков, сколько на соотношении их фракций, изменение которого - диспротеинемия - наблюдает­ся при большинстве поражений печени.

    Метод электрофореза на бумаге , наиболее широко используемый в настоящее время в клинической практике, основан на том, что в электрическом поле различные белки в зависи­мости от величины, формы молекулы, ее заряда и других факторов с разной скоростью дви­жутся по направлению к положительному электроду. При электрофорезе на бумаге различ­ные фракции белков концентрируются на разных участках бумажной полосы, где их можно выявить соответствующей окраской. Величину фракций определяют по интенсивности окраски каждой из них. Белки плазмы крови разделяются на пять основных фракций - аль­бумины; ш, а2-, р-, а также у-глобулины. Электрофорез в других средах (агаровый, крахмальный гель и др.) позволяет разделить белки на большее число фракций.

    При заболеваниях печени наиболее часто встречается уменьшение альбумин-глобулинового коэффициента (А/Г), главным образом за счет снижения содержания альбуминов (нару­шение их синтеза). При остром воспалении печени (острый гепатит) наблюдается увеличе­ние содержания в плазме крови а 2 -глобулинов, при хроническом - преимущественно у-глобулинов, возможно, за счет накопления антител, движущихся при электрофорезе с у-глобулинами; при этом общее количество белка сыворотки нередко также увеличивается. При циррозе печени общее содержание белка сыворотки значительно падает преимущественно за счет альбуминов; однако заметно нарастает содержание у-глобулинов.

    Фибриноген при электрофорезе на бумаге мигрирует с у-глобулинами и отдельно не выяв­ляется. Для количественного определения фибриноген осаждают из плазмы путем прибавле­ния хлорида кальция с последующим взвешиванием промытого и высушенного осадка или определением белка в этом осадке после его растворения. Фибриноген синтезируется в пече­ни, поэтому при тяжелом ее поражении количество фибриногена в плазме снижается, что мо­жет отразиться и на свертышании крови. Нормальное его содержание 2-4 г/л, или 8-14 мг/мл (200-400 мг% - масса сгустка; метод Рутберга).

    Общее количество белка плазмы определяют чаще всего рефрактометрическим методом, а при отсутствии рефрактометра - химическими методами: Кьельдаля, биуретовой реакцией, а также нефелометрическим и др.

    Белковые осадочные пробы . Соотношение белковых фракций, помимо электрофореза, определяют путем иммуноэлектрофореза, ультрацентрифугирования и др. Помимо непосред­ственного определения соотношения белковых фракций, применяется ряд простых проб, с помощью которых выявляют наличие диспротеинемии. Это так нашваемые белковые оса­дочные (флоккуляционные) пробы. Сущность их состоит в том, что при диспротеинемии, особенно при уменьшении содержания альбуминов, нарушается устойчивость коллоидной системы крови. Это нарушение выявляется при добавлении к сыворотке электролита в такой концентрации, которая не изменяет нормальную сыворотку, но при диспротеинемии вызыва­ет помутнение или выпадение хлопьев - флоккуляцию белка. То же наблюдается при появ­лении в крови патологических белков - парапротеинов. К этой группе проб относятся про­бы с сулемой (реакция Таката-Ара, сулемовые пробы Гринстеда и Гросса),сульфатом цин­ка, сульфатом кадмия, люголевским раствором и др. В другой группе флоккуляционных проб реактив является коллоидным раствором, устойчивость которого нарушается при до­бавлении к нему небольшого количества дис- или парапротеинемической сыворотки (тимо­ловая, золотоколлоидальная пробы и др.).

    Тимоловая проба основана па определении степени помутнения коллоидного тимолового реактива при добавлении к нему 1До объема сыворотки. Она бывает положительной преиму­щественно при увеличении в сыворотке содержания р-липопротеинов. Это одна из постоян­но положительных проб при вирусном гепатите, диффузных поражениях печени. Она отри­цательна при механической желтухе.

    При значительном увеличении количества глобулинов и особенно фибриногена положи­тельной оказывается формоловая проба - превращение сыворотки в студневидную массу (желатинизация) от прибавления формалина.

    Все осадочные пробы (их предложены десятки) неспецифичны, их изменения обнаружи­ваются не только при заболеваниях печени, но и при миеломной болезни, коллагенозах и др. Эти пробы выявляют диспротеинемию, но гораздо более простыми и доступными способа­ми, чем электрофорез.

    Протромбин (II фактор свертывания крови) синтезируется только в печени при участии витамина К. Причиной гипопротромбинемии может быть как нарушение способности гепатоцитов к синтезу протромбина, так и недостаток жирорастворимого витамина К, поступаю­щего в печень из кишечника. При механической желтухе, когда всасывание жиров, а с ними и витамина К нарушается, выработка печенью протромбина и содержание его в крови пада­ют. Для выяснения причины гипопротромбинемии применяютпробу с парентеральным вве­дением витамина К . Если после этого содержание протромбина сыворотки увеличивается, значит, протромбинообразовательная функция печени не нарушена. Эта проба помогает диф­ференцировать механическую желтуху от паренхиматозной. Протромбин определяют по ско­рости свертывания рекальцифицированной плазмы в присутствии избытка тромбопластина.

    Определение содержания продуктов расщепления белка. Из продуктов расщепления белка некоторое диагностическое значение имеют аминокислоты, мочевина, остаточный азот и ам­миак. Общее количество аминокислот крови повышается только при тяжелые поражениях печени, когда нарушаются ее дезаминирующая и мочевинообразовательная функции, в об­щем довольно устойчивые. Условием для повышения содержания остаточного азота крови при заболеваниях печени является одновременное нарушение функции почек. Повышение остаточного азота при почечной недостаточности отличается от такового при печеночно-по- чечной недостаточности тем, что при первой основным компонентом остаточного азота яв­ляется мочевина, а при второй заметную долю составляют аминокислоты. Раздельное опре­деление аминокислот крови при помощи хроматографии не обеспечивает при поражении пе­чени достаточно четких диагностических данных, чтобы оправдать столь трудоемкую проце­дуру. Некоторое диагностическое значение сохраняет метод определения в осадке мочи кри­сталлов лейцина и тирозина, появляющихся в ней при острой дистрофии печени.