Деление истинного горизонта и дальность видимого горизонта. Теория навигации

Глава VII . Навигация.

Навигация - основа науки о судовождении. Навигационный способ судовождения заключается в том, чтобы провести судно из одного места в другое наивыгоднейшим, кратчайшим и безопасным путем. Этот способ решает две задачи: как направить судно по избранному пути и как определять его место в море по элементам движения судна и наблюдениям береговых предметов с учетом воздействия на судно внешних сил - ветра и течения.

Чтобы быть уверенным в безопасности движения своего судна, необходимо знать место судна на карте, определяющее его положение относительно опасностей в данном района плавания.

Навигация занимается разработкой основ судовождения, она изучает:

Размеры и поверхность земли, способы изображения земной поверхности на картах;

Способы счисления и прокладки пути судна на морских картах;

Способы определения места судна на море по береговым предметам.

§ 19. Основные сведения о навигации.

1. Основные точки, круги, линии и плоскости

Наша земля имеет форму сфероида, у которого большая полуось ОЕ равна 6378 км, а малая полуось ОР 6356 км (рис. 37).


Рис. 37. Определение координат точки на земной поверхности

Практически, с некоторым допущением, землю можно считать шаром, вращающимся вокруг оси, занимающей определенное положение в пространстве.

Для определения точек на земной поверхности ее принято мысленно делить вертикальными и горизонтальными плоскостя ми, образующими с поверхностью земли линии - меридианы и параллели. Концы воображаемой оси вращения земли называются полюсами - северным, или нордовым, и южным, или зюйдовым.

Меридианы - большие круги, проходящие через оба полюса. Параллели - малые круги на земной поверхности, параллельные экватору.

Экватор - большой круг, плоскость которого проходит через центр земли перпендикулярно оси ее вращения.

Как меридианов, так и параллелей на земной поверхности можно вообразить бесчисленное множество. Экватор, меридианы и параллели образуют сетку географических координат земли.

Место любой точки А на земной поверхности можно определить по ее широте (f) и долготе (l).

Широтой места называется дуга меридиана от экватора до параллели данного места. Иначе: широта места измеряется центральным углом, заключенным между плоскостью экватора и направлением из центра земли на данное место. Широта измеряется в градусах от О до 90° по направлению от экватора к полюсам. При расчетах считают, что северная широта f N имеет знак плюс, южная широта - f S знак минус.

Разностью широт (f 1 - f 2) называется дуга меридиана, заключенная между параллелями данных точек (1 и 2).

Долготой места называется дуга экватора от нулевого меридиана до меридиана данного места. Иначе: долгота места измеряется дугой экватора, заключенной между плоскостью нулевого меридиана и плоскостью меридиана данного места.

Разностью долгот (l 1 -l 2) называется дуга экватора, заключенная между меридианами заданных точек (1 и 2).

Нулевой меридиан - гринвичский меридиан. От него производится измерение долготы в обе стороны (к востоку и западу) от 0 до 180°. Западная долгота отсчитывается на карте влево от гринвичского меридиана и при расчетах берется со знаком минус; восточная - вправо и имеет знак плюс.

Широта и долгота любой точки на земле называются географическими координатами этой точки.

2. Деление истинного горизонта

Мысленно воображаемая горизонтальная плоскость, проходящая через глаз наблюдателя, называется плоскостью истинного горизонта наблюдателя, или истинного горизонта (рис. 38).

Предположим, что в точке А находится глаз наблюдателя, линия ZABC - отвесная, HH 1 - плоскость истинного горизонта, а линия P NP S - ось вращения земли.

Из множества вертикальных плоскостей только одна плоскость на чертеже будет совпадать с осью вращения земли и точкой А. Пересечение этой вертикальной плоскости с поверхностью земли дает на ней большой круг P N BEP SQ , называемый истинным меридианом места, или меридианом наблюдателя. Плоскость истинного меридиана пересекается с плоскостью истинного горизонта и дает на последней линию норд-зюйда NS . Линия OW , перпендикулярная линии истинного норд-зюйда, называется линией истинного оста и веста (востока и запада).

Таким образом, четыре основные точки истинного горизонта - север, юг, восток и запад - занимают в любом месте на земле, кроме полюсов, вполне определенное положение, благодаря чему относительно этих точек можно определять различные направления по горизонту.

Направления N (север), S (юг), О (восток), W (запад) носят название главных румбов. Вся окружность горизонта делится на 360°. Деление производится от точки N по движению часовой стрелки.

Промежуточные направления между главными румбами называются четвертными румбами и носят наименование NO , SO , SW , NW . Главные и четвертные румбы имеют следующие значения в градусах:


Рис. 38. Истинный горизонт наблюдателя

3. Видимый горизонт, дальность видимого горизонта

Видимое с судна водное пространство ограничивается окружностью, образованной кажущимся пересечением небесного свода с поверхностью воды. Эта окружность называется видимым горизонтом наблюдателя. Дальность видимого горизонта зависит не только от высоты расположения глаз наблюдателя над водной поверхностью, но и от состояния атмосферы.



Рис 39. Дальность видимости предмета

Судоводитель всегда должен знать, как далеко он видит горизонт в разных положениях, например, стоя у штурвала, на палубе, сидя и т. п.

Дальность видимого горизонта определяется по формуле:

d = 2,08

или, приближенно, для высоты глаза наблюдателя менее 20 м по формуле:

d = 2 ,

где d - дальность видимого горизонта в милях;

h - высота глаза наблюдателя, м.

Пример. Если высота глаза наблюдателя h = 4 м, то дальность видимого горизонта 4 мили.

Дальность видимости наблюдаемого предмета (рис. 39), или, как ее называют, географическая даль ность D n , является суммой дальностей видимого горизонта с высоты этого предмета Н и высоты глаза наблюдателя А.

Наблюдатель А (рис. 39), находящийся на высоте h , со своего судна может видеть горизонт только на расстояние d 1 , т. е. до точки В водной поверхности. Если же поместить наблюдателя в точке В водной поверхности, то он мог бы видеть маяк С, расположенный от него па расстоянии d 2 ; поэтому наблю датель, находящийся в точке А, увидит маяк с расстояния, равного D n :

D n= d 1+d 2.

Дальность видимости предметов, расположенных выше уровня воды, можно определить по формуле:

D n = 2,08( + ).

Пример. Высота маяка H = 1б,8 м, высота глаза наблюдателя h = 4 м.

Решение. D n = l 2,6 мили, или 23,3 км.

Дальность видимости предмета определяется также приближенно по номограмме Струйского (рис. 40). Прикладывая линейку так, чтобы одной прямой были соединены высоты, соответствующие глазу наблюдателя и наблюдаемому предмету, получают на средней шкале дальность видимости.

Пример. Найти дальность видимости предмета высотой над уровнем моря в 26,2 м при высоте глаза наблюдателя над уровнем моря в 4,5 м.

Решение. D n = 15,1 мили (пунктирная линия на рис. 40).

На картах, лоциях, в навигационных пособиях, в описании знаков и огней дальность видимости дана для высоты глаза наблюдателя 5 ж от уровня воды. Так как на маломерном судне глаз наблюдателя расположен ниже 5 м, для него дальность видимости будет меньше обозначенной в пособиях или на карте (см. табл. 1).

Пример. На карте обозначена дальность видимости маяка в 16 миль. Это значит, что наблюдатель увидит этот маяк с расстояния 16 миль, если его глаз будет на высоте 5 м над уровнем моря. Если же глаз наблюдателя находится на высоте 3 м, то видимость соответственно уменьшится на разность дальности видимости горизонта для высот 5 и 3 м. Дальность видимости горизонта для высоты 5 м равна 4,7 мили; для высоты 3 м - 3,6 мили, разность 4,7 - 3,6=1,1 мили.

Следовательно, дальность видимости маяка будет равна не 16 милям, а только 16 - 1,1 = 14,9 мили.


Рис. 40. Номограмма Струйского

Дальность видимости горизонта

Наблюдаемая в море линия, по которой море как бы соединяется с небосводом, называется видимым горизонтом наблюдателя.

Если глаз наблюдателя находится на высоте е М над уровнем моря (т. А рис. 2.13), то луч зрения идущий по касательной к земной поверхности, определяет на земной поверхности малый круг аа , радиуса D .

Рис. 2.13. Дальность видимости горизонта

Это было бы верно, если бы Землю не окружала атмосфера.

Если принять Землю за шар и исключить влияние атмосферы то, из прямоугольного треугольника ОАа следует: ОА=R+e

Так как величина чрезвычайно мала (для е = 50м при R = 6371км – 0,000004 ), то окончательно имеем:

Под действием земной рефракции, в результате преломления зрительного луча в атмосфере, наблюдатель видит горизонт дальше (по кругу вв ).

(2.7)

где х – коэффициент земной рефракции (» 0,16).

Если принять дальность видимого горизонта D e в милях, а высоту глаза наблюдателя над уровнем моря (е М ) в метрах и подставить значение радиуса Земли (R =3437,7 мили = 6371 км ), то окончательно получим формулу для расчета дальности видимого горизонта

(2.8)

Например:1) е = 4 м D е = 4,16 мили; 2) е = 9 м D е = 6,24 мили;

3) е = 16 м D е = 8,32 мили; 4) е = 25 м D е = 10,4 мили.

По формуле (2.8) составлена таблица № 22 «МТ-75» (с. 248) и таблица № 2.1 «МТ-2000» (с. 255) по (е М ) от 0,25 м ¸ 5100 м . (см. табл. 2.2)

Дальность видимости ориентиров в море

Если наблюдатель, высота глаза которого находится на высоте е М над уровнем моря (т. А рис. 2.14), наблюдает линию горизонта (т. В ) на расстоянии D е(миль) , то, по аналогии, и с ориентира (т. Б ), высота которого над уровнем моря h M , видимый горизонт (т. В ) наблюдается на расстоянии D h(миль) .

Рис. 2.14. Дальность видимости ориентиров в море

Из рис. 2.14 очевидно, что дальность видимости предмета (ориентира), имеющего высоту над уровнем моря h M , с высоты глаза наблюдателя над уровнем моря е М будет выражаться формулой:

Формула (2.9) решается с помощью таблицы 22 «МТ-75» с. 248 или таблицы 2.3 «МТ-2000» (с. 256).

Например: е = 4 м, h = 30 м, D П = ?

Решение: для е = 4 м ® D е = 4,2 мили;

для h = 30 м® D h = 11,4 мили.

D П = D е + D h = 4,2 + 11,4 = 15,6 мили.

Рис. 2.15. Номограмма 2.4. «МТ-2000»

Формулу (2.9) можно решать и с помощью Приложения 6 к «МТ-75» или номограммы 2.4 «МТ-2000» (с. 257) ® рис. 2.15.

Например: е = 8 м, h = 30 м, D П = ?

Решение: Значения е = 8 м (правая шкала) и h = 30 м (левая шкала) соединяем прямой линией. Точка пересечения этой линии со средней шкалой (D П ) и даст нам искомую величину 17,3 миль. (см. табл. 2.3).

Географическая дальность видимости предметов (из табл. 2.3. «МТ-2000»)

Примечание:

Высота навигационного ориентира над уровнем моря выбирается из навигационного руководства для плавания «Огни и знаки» («Огни»).

2.6.3. Дальность видимости огня ориентира, показанная на карте (рис. 2.16)

Рис. 2.16. Дальности видимости огня маяка, показанные

На навигационных морских картах и в навигационных пособиях дальность видимости огня ориентира дана для высоты глаза наблюдателя над уровнем моря е = 5 м, т.е.:

Если же действительная высота глаза наблюдателя над уровнем моря отличается от 5 м, то для определения дальности видимости огня ориентира необходимо к дальности, показанной на карте (в пособии), прибавить (если е > 5 м), или отнять (если е < 5 м) поправку к дальности видимости огня ориентира (DD К ), показанной на карте за высоту глаза.

(2.11)

(2.12)

Например: D К = 20 миль, е = 9 м.

D О = 20,0+1,54=21,54мили

тогда: D О = D К + ∆ D К = 20,0+1,54 =21,54 мили

Ответ: D О = 21,54 мили.

Задачи на расчет дальностей видимости

А) Видимого горизонта (D e ) и ориентира (D П )

Б) Открытие огня маяка

Выводы

1. Основными для наблюдателя являются:

а) плоскости:

Плоскость истинного горизонта наблюдателя (пл. ИГН);

Плоскость истинного меридиана наблюдателя (пл. ИМН);

Плоскость первого вертикала наблюдателя;

б) линии:

Отвесная линия (нормаль) наблюдателя,

Линия истинного меридиана наблюдателя ® полуденная линия N-S ;

Линия Е-W .

2. Системами счета направлений являются:

Круговая (0°¸360°);

Полукруговая (0°¸180°);

Четвертная (0°¸90°).

3. Любое направление на поверхности Земли может быть измерено углом в плоскости истинного горизонта, принимая за начало отсчета линию истинного меридиана наблюдателя.

4. Истинные направления (ИК, ИП) определяются на судне относительно северной части истинного меридиана наблюдателя, а КУ (курсовой угол) – относительно носовой части продольной оси судна.

5. Дальность видимого горизонта наблюдателя (D e ) рассчитывается по формуле:

.

6. Дальность видимости навигационного ориентира (днем в хорошую видимость) рассчитывается по формуле:

7. Дальность видимости огня навигационного ориентира, по его дальности (D К ), показанной на карте, рассчитывается по формуле:

, где .

КУРС ЛЕКЦИЙ

ПО ДИСЦИПЛИНЕ

«НАВИГАЦИЯ И ЛОЦИЯ МОРЯ»

Составил преподаватель Милованов В.Г.

НАВИГАЦИЯ И ЛОЦИЯ

ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ

Форма и размеры Земли

Формой Земли является геоид - геометрическое тело, поверхность которого во всех точках перпендикулярна направлению силы тяжести, близкое по форме к эллипсоиду вращения. В СССР принят (с 1946 г.) референц-эллипсоид Ф. Н. Красовского с размерами: большая полуось 6 378 245 м; малая полуось 6 356 863 м. В разных странах приняты различные размеры земного эллипсоида, поэтому переход на иностранные карты, особенно при плавании вблизи берегов и навигационных опасностей, следует осуществлять не по координатам, а по пеленгу и расстоянию до берегового ориентира, нанесенного на обе карты.

Морские единицы длины и скорости

Морская миля* - средняя длина дуги одной минуты земного меридиана (* Ниже везде миля). Длина дуги одной минуты земного меридиана

L`=1852,23 - 9,34 cos 2f,

где f - широта места судна, град.

Длина морской мили, принятая в различных государствах, м

Кабельтов - одна десятая часть морской мили, округленно равен 185 м.

Узел -одна морская миля в час, или 0,514 м/с.

На английских картах употребляются также футы . (0,3048 м) и сажени (1,83 м).

Дальность видимого горизонта и видимости объекта

Дальность видимого горизонта: Дe=2,08√e

Дальность видимости объекта (предмета): Дп=2,08√e + 2,08√h

Приведение дальности видимости объекта, показанной на карте, к высоте глаза наблюдателя, отличающейся от 5 м, следует производить по формуле:

Дп =Дк+Де - 4,7.

В этих формулах:

Де - дальность видимого горизонта, мили для данной высоты глаза наблюдателя е, м;

2,08 - коэффициент, рассчитанный из условия, что коэффициент земной рефракции равен 0,16 и радиус Земли R = 6371,1 км;

Дп -дальность видимости предмета, мили;

h - высота наблюдаемого предмета, м;

Дк - дальность видимости предмета, указанная на карте.

Примечание. Следует учитывать, что указанные формулы применимы при условии среднего состояния атмосферы и дневного времени суток.

Исправление и перевод румбов (рис. 2.1)

Истинный курс (ИК) - угол между северной частью истинного меридиана и диаметральной плоскостью судна.

Истинный пеленг (ИП) - угол между северной частью истинного меридиана и направлением на объект.

Обратный истинный пеленг (ОИП) - отличается от ИП на 180°

Курсовой угол (КУ) - угол между носовой частью диаметральной плоскости судна и направлением на объект; измеряется от 0 до 180° в сторону правого и левого борта или по часовой стрелке от 0 до 360°. КУ правого борта имеет знак “плюс”, КУ левого борта - знак “минус”.

Зависимости между ИК, ИП и КУ:

ИК=ИП-КУ; ИП =ИК+КУ; КУ=ИП-ИК.

Компасный, гирокомпас ный курс (КК,ГКК) -угол между северной частью компасного (гироскопического) меридиана и носовой частью диаметральной плоскости судна.

Компасный, гирокомпасный пеленг (КП,ГКП )-угол между северной частью компасного (гироскопического) меридиана и направлением на объект.

Поправка компаса (гирокомпаса) АК (АГК) - угол между истинным и компасным (гироскопическим) меридианами. Восточная (остовая) ЛК (ЛГК) имеет знак “плюс”, западная (вестовая) - “минус”.

Рис. 2.1. Исправление и перевод румбов

ИК =КК + ΔК;

ИП =КП + ΔК;

КК = ИК - ΔК;

КП = ИП - ΔК;

ИК = ГКК - ΔГК;

ИП = ГКП + ΔГК;

ГКК = ИК - ΔГК

ГКП= ИП - ΔГК

Географические координаты

Пусть судно и находящийся на нем наблюдатель расположены в точке М на поверхности Земли (см. рис. 2) . Проведем параллель и меридиан этой точки, отметив пересечение последнего с экватором в точке К. Положение точки на поверхности шара определяется двумя сферическими координатами - широтой f и долготой Л.

Широта - угол между плоскостью экватора и линией, соединяющей место наблюдателя на поверхности Земли с центром земного шара. Так, широта точки М выражается центральным углом МОК, измеряемым дугой меридиана КМ. Широта ср измеряется в пределах от 0 до 90° от экватора в сторону географических полюсов и имеет наименование N - северная или S - южная в зависимости от того, в каком полушарии находится наблюдатель. Таким образом, географическая параллель ММ"М" является геометрическим местом точек, имеющих одну и ту же широту.

Широта точек, расположенных на экваторе, равна 0°, широта северного полюса - 90°N, а широта южного полюса - 90°S.

Долгота - двугранный угол между плоскостями нулевого (гринвичского) меридиана и меридиана наблюдателя (точки М). Этот угол измеряют меньшей дугой экватора (но не параллели), заключенной между указанными меридианами, от 0 до 180° в обе стороны от начального (гринвичского) меридиана. Так, долгота точки М (см. рис. 2 и 3) измеряется дугой экватора GK.

Рис.3.

Долгота имеет наименование Ost - восточная или W - западная, в зависимости от того, в каком полушарии (западном или восточном) находится наблюдатель.

Таким образом, географический меридиан PnMPs является геометрическим местом точек, имеющих одну и ту же долготу.

Долгота точек, расположенных на гринвичском меридиане (Рn GPs - рис. 2 или PnG - рис. 3), равна 0°; долгота точек, расположенных на меридиане P n G"P s (см. рис. 2), равна 180° Ost или 180° W.

Морские карты крупных масштабов, предназначенные для плавания вблизи берегов, позволяют снимать с них географические координаты точки с точностью до десятых долей минуты дуги. Так, например на картах прибрежных участков моря: маяк Архона имеет координаты ϕ = 54°40", 8N и λ = 13°26, 10st; маяк Балье ϕ = 53°31", 7N и λ = 9°04", 90st; маяк Гельголанд ϕ = 54°11,0N и λ =7°53", Ost;

Разность широт и разность долгот

Совершая плавание из одной точки на земной поверхности А (ϕ1 λ1-пункт отхода) в точку В (ϕ2, λ2 - пункт прихода) судно меняет свою широту и долготу; при этом образуется разность широт и разность долгот (рис. 4).

Разность широт (РШ) - меньшая из дуг любого меридиана, заключенная между параллелями пунктов отхода и прихода (дуга СВ на рис. 4) измеряется в пределах от 0 до 180° и имеет наименование к N, если северная широта увеличивается или южная широта уменьшается, и к S, если северная широта уменьшается или южная увеличивается.

Если северной широте условно приписать знак «плюс», а южной- знак «минус», то РШ и ее наименование определятся по формуле

В примерах 1, 2 и 3 для простоты рассуждений пункты отхода и прихода расположены на одном географическом меридиане, т. е. имеют одну и ту же долготу. На рис. 5 стрелкой показаны направления движения судна и сделанные им разности широт.

Пункт отхода А - φ1 = 16°44" ON по формуле (4) φ2 = + 58°17", 5

Пункт отхода С - φ1 = 47°10", 4 S по формуле (4) φ2 = - 21°23", 0

Пункт отхода F - φ1 = 24°17", 5 N по формуле (4) φ2 = - 5°49",2

Разность долгот (РД) - меньшая из дуг экватора, заключенная между меридианами пунктов отхода и прихода (дуга KD, рис. 4), измеряется в пределах от 0 до 180° и имеет наименование к Ost, если восточная долгота увеличивается или западная долгота уменьшается, и к W, если восточная долгота уменьшается или западная долгота увеличивается.

Если восточной долготе условно приписать знак «плюс», а западной «минус», то PD и ее наименование определятся по формуле:

РД = λ2 – λ1 (5)

В примерах 4, 5, 6 и 7 для простоты рассуждений пункты отхода и прихода выбраны расположенными на одной географической параллели, т. е. имеющими одну и ту же широту. На рис. 6, а, б стрелками показаны направления движения судна и сделанные им разности долгот.

Разность долгот не может быть больше 180°. Однако при решении задач на разность долгот по формуле (5) величина РД может получиться более 180°. В этом случае полученный результат вычитают из 360° и изменяют наименование РД на обратное (пример 7).

Пункт отхода А - λ1 = 12°44", 0 Ost по формуле (5) λ2 =+48°13" , 5

Пункт отхода С - λ1 = 110°15",0 W по формуле (5) λ2 = - 87°10",0

Пункт отхода М - λ1 = 21°37",8 W по формуле (5) λ2 = + 11°42",4

Пункт отхода F - λ1 =164°06",3 W по формуле (5) λ2 = + 170°35",1

Непосредственно из рис. 6, а видно, что (АВ)°=(А"В")°, но длины этих дуг не равны, т. е. АВ=А"В". Таким образом, длина окружности географической параллели в широте ср короче длины экватора, так как радиус r такой параллели короче радиуса R экватора, связанных отношением

R = r sec ϕ.

Поэтому А"В" = АВ sec ϕ или

РД = ОТШ sec ϕср (6)

где ОТШ - от шествие длина дуги параллели (но не экватора) в широте ср, заключенная между меридианами пунктов отхода и прихода.

Магнитное склонение

(d) - угол между истинным и магнитным меридианами, изменяется от 0 до 180°. Восточное имеет знак “плюс”, западное - “минус”; d снимается с карты в районе плавания и приводится к году плавания. Годовое увеличение (уменьшение) d относится к абсолютной величине склонения, т. е. к углу, а не к его знаку (см. рис. 2.1.). При уменьшении склонения, если значение его небольшое, а изменение за несколько лет превосходит указанное на карте, при переходе через ноль склонение начинает возрастать с противоположным знаком.

Магнитное склонение - наиболее важный элемент для судовождения, поэтому его, помимо специальных магнитных карт, указывают на навигационных морских картах, на которых записывают, например, так: «Скл. к. 16°,5 W». Все элементы земного магнетизма в любой точке земной поверхности подвержены изменениям, носящим название вариаций. Изменения элементов земного магнетизма делятся на периодические и непериодические (или возмущения).

К периодическим относятся вековые, годовые (сезонные) и суточные изменения. Из них суточные и годовые вариации невелики и для судовождения во внимание не принимаются. Вековые же вариации представляют собой сложное явление с периодом, равным нескольким столетиям. Величина векового изменения магнитного склонения колеблется в различных точках земной поверхности в пределах от 0 до 0,2-0°,3 в год. Поэтому на морских картах магнитное склонение компаса приводится к определенному году с указанием величины годового увеличения или уменьшения.

Чтобы привести склонение к году плавания, надо рассчитать его изменение за истекшее время и на полученную поправку увеличить или уменьшить склонение, указанное на карте в районе плавания.

Пример : Плавание происходит в 2012 г. Склонение компаса, снято с карты, d = 11°, 5 Оst приведено к 2004 г. Годовое увеличение склонения 5" .Привести склонение к 2012 г.

Решение. Промежуток времени с 2004 по 2012 г. равен восьми годам; изменение Аd = 8 х 5 = 40" ~0°,7. Склонение компаса в 2012 г. d = 11°.5 + 0°,7 = - 12°, 2 Ost

Внезапные кратковременные изменения элементов земного магнетизма (возмущения) называются магнитными бурями, возникновение которых обусловлено северными сияниями и количеством пятен на Солнце. При этом наблюдаются изменения склонения в умеренных широтах до 7°, а в полярных областях - до 50°.

В некоторых районах земной поверхности склонение резко отличается по величине и знаку от его значений в прилегающих точках. Это явление носит название магнитной аномалии. На морских картах указывают границы районов магнитной аномалии. При плавании в этих районах необходимо внимательно следить за работой магнитного компаса, так как точность работы нарушается.

Магнитный курс (МК) - угол между северной частью магнитного меридиана и носовой частью диаметральной плоскости судна.

Магнитный пеленг (МП) - угол между северной частью магнитного меридиана и направлением на,объект.

Обратный магнитный пеленг (ОМП) -отличается от МП на 180°.

Девиация магнитного компаса (δ) - угол между магнитным и компасным меридианами, изменяется от 0 до 180°. Восточной (остовой) - приписывается знак “плюс”, западной (вестовой) - “минус”.

МК =КК + δ; МП =КП + δ; ΔМК(ΔК) =d + δ; d=ИК - МК=ИП - МП; КК=МК- δ; КП=МП- δ; δ =ΔМК-d; δ =МК-КК=МП-КП

Судовые специалисты могут выполнить в процессе эксплуатации уничтожение полукруговой и креновой девиации. Простейший способ совместного уничтожения полукруговой и креновой девиаций сводится к следующему:

с помощью судового инклинатора измеряют на берегу значение магнитного наклонения. При выполнении этого способа в открытом море магнитное наклонение снимают с карты;

приводят судно на магнитный курс 0 (или 180°) и поперечными магнитами доводят девиацию до нуля;

разворачивают судно на магнитный курс 180° (или 0°), определяют девиацию и теми же магнитами уменьшают ее в 2 раза;

ложатся на магнитный курс 90° (или 270°). Вместо компасного котелка устанавливают инклинатор и креновым магнитом доводят показания по инклинатору до значения магнитного наклонения, измеренного на берегу или снятого с карты;

на том же курсе устанавливают на место котелок компаса и продольными магнитами доводят девиацию до нуля;

разворачиваются на магнитный курс 270° (или 90°), определяют девиацию и теми же продольными магнитами уменьшают ее в 2 раза.

Видимый горизонт. Учитывая, что земная поверхность близка к окружности, наблюдатель видит эту окружность, ограниченную горизонтом. Эта окружность и называется видимым горизонтом. Расстояние от места нахождения наблюдателя до видимого горизонта называется дальностью видимого горизонта.

Предельно ясно, что чем выше над землей (поверхностью воды) будет расположен глаз наблюдателя, тем больше будет и дальность видимого горизонта. Дальность видимого горизонта на море измеряется в милях и определяется по формуле:

где: De - дальность видимого горизонта, м;
е - высота глаза наблюдателя, м (метр).

Для получения результата в километрах:

Дальность видимости предметов и огней. Дальность видимости предмета (маяк, другое судно, сооружение, скала и т.д.) на море зависит не только от высоты глаза наблюдателя, но и от высоты наблюдаемого предмета (рис. 163 ).

Рис. 163 . Дальность видимости маяка.

Следовательно дальность видимости предмета (Dn) будет суммой De и Dh.

где: Dn - дальность видимости предмета, м;
De - дальность видимого горизонта наблюдателем;
Dh - дальность видимого горизонта с высоты предмета.

Дальность видимости предмета над уровнем воды определяется по формулам:

Dп = 2,08 (√е + √h), мили;
Dп = 3,85 (√е + √h), км.

Пример.

Дано : высота глаза судоводителя е = 4 м, высота маяка h = 25 м. Определить на каком расстоянии судоводитель должен увидеть маяк в ясную погоду. Dп = ?

Решение: Dп = 2,08 (√е + √h)
Dп = 2,08 (√4 + √25) = 2,08 (2 + 5) = 14,56 м = 14,6 м.

Ответ: Маяк откроется наблюдателю на расстояние около 14,6 мили.

На практике судоводители дальность видимости предметов определяют либо по номограмме (рис. 164 ), либо по мореходным таблицам, используя при этом карты, лоции, описания огней и знаков. Следует знать, что в упомянутых пособиях дальность видимости предметов Dk (дальность видимости карточная) указана при высоте глаза наблюдателя е = 5 м и, чтобы получить истинную дальность конкретного предмета, необходимо учесть поправку DD для разницы видимости между фактической высотой глаза наблюдателя и карточной е = 5 м. Эта задача решается при помощи мореходных таблиц (МТ). Определение дальности видимости предмета по номограмме осуществляется следующим образом: линейка прикладывается к известным значениям высоты глаза наблюдателя е и высоты предмета h; пересечение линейки со средней шкалой номограммы дает значение искомой величины Dn. На рис. 164 Dп = 15 м при е = 4,5 м и h = 25,5 м.

Рис. 164. Номограмма для определения видимости предмета.

При изучении вопроса о дальности видимости огней в ночное время следует помнить, что дальность будет зависеть не только от высоты расположения огня над поверхностью моря, но и от силы источника освещения и от вида осветительного аппарата. Как правило, осветительный аппарат и сила освещения рассчитываются для маяков и других навигационных знаков таким образом, чтобы дальность видимости их огней соответствовала дальности видимости горизонта с высоты огня над уровнем моря. Судоводитель должен помнить, что дальность видимости предмета зависит от состояния атмосферы, а также топографических (цвет окружающего ландшафта), фотометрических (цвет и яркость предмета на фоне местности) и геометрических (размеры и форма предмета) факторов.

Поверхность Земли в поле вашего зрения начинает искривляться примерно на расстоянии 5 км. Но острота человеческого зрения позволяет видеть гораздо дальше горизонта. Если бы не было искривления, вы смогли бы разглядеть пламя свечи в 50 км от вас.

Дальность видения зависит от количества фотонов, испускаемых удалённым объектом. 1 000 000 000 000 звёзд этой галактики коллективно излучают достаточно света для того, чтобы несколько тысяч фотонов достигало каждого кв. см Земли. Этого хватает чтобы возбудить сетчатку человеческого глаза.

Так как, находясь на Земле, проверить остроту человеческого зрения невозможно, учёные прибегли к математическим расчётам. Они выяснили, что для того, чтобы увидеть мерцающий свет, нужно, чтобы на сетчатку попало от 5 до 14 фотонов. Пламя свечи на расстоянии 50 км, учитывая рассеивание света, даёт это количество, и мозг распознаёт слабое свечение.

Как узнать кое-что личное о собеседнике по его внешнему виду

Секреты «сов», о которых не знают «жаворонки»

Как работает «мозгопочта» - передача сообщений от мозга к мозгу через интернет

Зачем нужна скука?

«Человек-магнит»: Как стать харизматичнее и притягивать к себе людей

25 цитат, которые разбудят вашего внутреннего борца

Как развить уверенность в себе

Можно ли «очистить организм от токсинов»?

5 причин, по которым люди всегда будут винить в преступлении жертву, а не преступника

Эксперимент: мужчина пьёт по 10 банок колы в день, чтобы доказать её вред